Significance of Interface Design Aspects and Characteristics in Cu/SiCp Composites Fabricated by the Powder Metallurgy Route

  • T. S. KavithaaEmail author
  • L. Rangaraj
  • S. S. Avadhani


The research focuses on the interfacial design characteristics of Cu/SiCp composites by the provision of a metallic (NiP2) and a ceramic oxide (Y2O3) coating on SiCp for achieving better barrier or wetting properties. The research work further aims at the optimization of the powder metallurgy (PM) process parameters for compaction of interface-tailored Cu/SiCp composites. The microstructural and thermal property evaluation of the developed Cu/SiCp composite systems is described. The research evidences the best achievable thermal properties of developed Cu/SiCp composites and emphasizes the possible feasibility of establishing a materials development strategy toward their successful implementation as a novel thermal management material for aerospace electronic packages.



One of the authors (TSK) appreciates the financial assistance received under the Sensor Technology Development Facility from the Department of Heavy Industries and Public Enterprises, Government of India, to carry out this research work. The authors thank the directors, CMTI and CSIR-NAL, for the infrastructural support extended. TSK acknowledges her seniors Smt. S. Usha, Shri. S. Arumugasamy, and Dr. C.K. Srinivasa, CMTI, for the encouragement and support received. TSK thanks Shri. P. Aravindram, ISRO Satellite Application Centre, Bangalore, and Shri. A. Peer Mohamed, NIIST, Trivandrum, for extending the thermal characterization facilities; she also thanks M/s Carborundum Universal Limited, Chennai, for arranging the supply of green SiCp used in the research study.


  1. 1.
    G. Sundberg, P. Paul, C. Sung, and T. Vasilos: J. Mater. Sci., 2006, vol. 41, pp. 485–504.CrossRefGoogle Scholar
  2. 2.
    M.Z. Bukhari, M.S.J. Hashmi, and D. Brabazon: Proceedings of the 2nd International Malaysia-Ireland Joint Symposium on Engineering, Science and Business, pp. 417–30.Google Scholar
  3. 3.
    J. Culham, A. Khan, M. Yovanovich, and S. Muzychka: J. Electron. Packag. 2007, 129, 76–81.CrossRefGoogle Scholar
  4. 4.
    S.T. Sheppard, W.L. Pribble, D.T. Enerson, Z. Ring, R.P. Smith, S.T. Allen, and J.W. Palmour: 58th DRC Device Research Conference, Conference Digest 00TH8526, 2000.Google Scholar
  5. 5.
    M. Micovic, A. Kurdoghlian, P. Janke, P. Hashimoto, D.W.S. Wong, J.S. Moon, L. McCray, C. Nguyen: IEEE Trans. Electron. Dev, 2001, 48, 591–96.CrossRefGoogle Scholar
  6. 6.
    J.W. Palmour, S.T. Sheppard, R.P. Smith, S.T. Allen, W.L. Pribble, T.J. Smith, Z. Ring, J.J. Sumarekis, A.W. Saxler, and J.W. Milligan: Int. Electron. Dev. Meet. Tech. Dig., 2001, pp. 17.4.1–17.4.4.Google Scholar
  7. 7.
    J. Barcena, J. Maudes, J. Coleto and I. Obieta: 5th ESA Round Table on Micro/Nano Technologies for Space, 2005.Google Scholar
  8. 8.
    C. Zweben: Power Electron. Technol., 2006, vol. 32, pp. 40–47.Google Scholar
  9. 9.
    M. Sherif El-Eskandarany: Mechanical Alloying for Fabrication of Advanced Engineering Materials, 1st ed., William Andrew Applied Science Publisher, New York, NY, 2001, pp. 231–42.Google Scholar
  10. 10.
    M.Z. Bukhari, D. Brabazon, and M.S.J. Hashmi: 28th Int. Manufacturing Conf., 2011.Google Scholar
  11. 11.
    Y. Goldberg, M.E. Levinshtein, and S.L. Rumyantsev: Properties of Advanced Semiconductor Materials GaN, AlN, SiC, BN, SiC, and SiGe, John Wiley & Sons, New York, NY, 2001, pp. 93–148.Google Scholar
  12. 12.
    T. Schubert, A. Brendel, K. Schmid, T. Koeck, L. Ciupiński, W. Zieliński, T. Weibgarber, and B. Kieback: Compos. Part A: Appl. Sci. Manuf., 2007, vol. 38, pp. 2398–2403.CrossRefGoogle Scholar
  13. 13.
    K. Azmi, M.N. Derman, A.M. Mustafa Al Bakri, and A.V. Sandu: Key Eng. Mater., 2014, 594, 852–56.Google Scholar
  14. 14.
    M. Zaman, S.N.S. Bukhari, M.I.D. Brabazon, and M.S.J. Hashmi: 2nd Int. Malaysia-Ireland Joint Symp. on Engineering, Science and Business, 2012.Google Scholar
  15. 15.
    R. Warren and C.H. Anderson: Composites, 1984, vol. 15, pp. 101–111.CrossRefGoogle Scholar
  16. 16.
    J. Boselli, P.D. Pitcher, P.J. Gregson, and I. Sinclair: Mater. Sci. Eng. A, Struct. Mater. Prop. Microstruct. Process., 2001, vol. 300, pp. 113–24.CrossRefGoogle Scholar
  17. 17.
    K.M. Shu and G.C. Tu: Mater. Sci. Eng. A, Struct. Mater. Prop. Microstruct. Process., 2003, vol. 349, pp. 236–47.CrossRefGoogle Scholar
  18. 18.
    G.E. Monastyrsky, V. Odnosum, and J. Van Humbeeck: Intermetallics, 2002, vol. 10, pp. 95–103.CrossRefGoogle Scholar
  19. 19.
    T.S. Srivatsan, I.A. Ibrahim, F.A. Mohammed, and E.J. Lavernia: J. Mater. Sci., 1998, vol. 26, pp. 5965–78.CrossRefGoogle Scholar
  20. 20.
    W.C. Harrigan, Jr.: Mater. Sci. Eng. A, 1998, vol. 24, pp. 75–82.CrossRefGoogle Scholar
  21. 21.
    Q. Sun and O.T. Inal: Mater. Sci. Eng. B, 1996, vol. 41, pp. 261–66.CrossRefGoogle Scholar
  22. 22.
    H. Schmidt-Brücken and W. Schlapp: Z. Angew. Phys., 1971, vol. 32, pp. 307–10.Google Scholar
  23. 23.
    B. Dewar, M. Nicholas, and P.M. Scott: J. Mater. Sci., 1976, vol. 11, pp. 1083–90.CrossRefGoogle Scholar
  24. 24.
    G. Sundberg, P. Paul, C. Sung, and T. Vasilos: J. Mater. Sci., 2005, vol. 40, pp. 3383–93.CrossRefGoogle Scholar
  25. 25.
    T. Weibgarber, G. Lefranc, J. Schulz-Harder, H. Meyer, and O. Stocker: Proc. Int. Conf. on Advances in Powder Metallurgy & Particulate Materials, PM2TEC2003 Part 6, Metal Powder Industries Federation, 2003.Google Scholar
  26. 26.
    T. Schubert, B. Trindade, T. Weibgarber, and B. Kieback: Mater. Sci. Eng. A, 2008, vol. 475, pp. 39–44.CrossRefGoogle Scholar
  27. 27.
    A.E. Martinelli and R.A.L. Drew: Mater. Sci. Eng. A, 1995, vol. 191, pp. 239–47.CrossRefGoogle Scholar
  28. 28.
    Kattamuri Nirupama: Characterization of Various Metal Matrix Composite Thermal Management Materials, University of Massachusetts, Lowell, MA, 2009.Google Scholar
  29. 29.
    M.Z. Bukhari, M.S.J. Hashmi, and D. Brabazon: Aus. J. Basic Appl. Sci., 2013, vol. 7, pp. 350–65.Google Scholar
  30. 30.
    S. Kavithaa, B.C. Pai, R.M. Pillai, K.G. Satyanarayana, and S. Banerjee: An Improved Sol–Gel Process for Coating Ceramic Reinforcements with Rare Earth Oxides, PAN0370/DEL/2008.Google Scholar
  31. 31.
    G. Celebi Efe, I. Altinsoy, M. Ipek, S. Zeytin, and C. Bindal: Acta Physica Polonica A, 2012, 121, 251–53.CrossRefGoogle Scholar
  32. 32.
    G. Celebi Efe, I. Altinsoy, T. Yener, M. Ipek, S. Zeytin, and C. Bindal: Acta Physica Polonica A, 2014, 125, 417–19.CrossRefGoogle Scholar
  33. 33.
    R. Sheshadri, V. Narayanaswamy, B. Dwarakanatha Rao, and L. Rangaraj: Advances in High-Pressure Science and Technology, Tata McGraw-Hill, New Delhi, 1995.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  1. 1.Sensors and Vision Technology DivisionCentral Manufacturing Technology Institute (CMTI)BangaloreIndia
  2. 2.Materials Science DivisionCSIR - National Aerospace Laboratories (CSIR-NAL)BangaloreIndia
  3. 3.Chemical LaboratoryCentral Manufacturing Technology Institute (CMTI)BangaloreIndia

Personalised recommendations