Advertisement

Effect of Composition on the Strength and Electrical Conductivity of Cu-Ti Binary Alloy Wires Fabricated by Aging and Intense Drawing

  • Satoshi Semboshi
  • Yasuyuki Kaneno
  • Takayuki Takasugi
  • Sueng Zeon Han
  • Naoya Masahashi
Article
  • 15 Downloads

Abstract

The strength and electrical conductivity of Cu-Ti alloy wires fabricated by over-aging and intense drawing were investigated as a function of Ti content (2.7 to 4.3 at. pct). The microstructure of all over-aged Cu-Ti alloys before drawing showed mainly coarse cellular components laminating the plates of a terminal Cu solid solution and a β-Cu4Ti intermetallic compound precipitated discontinuously by grain boundary reactions. The volume fraction of β-Cu4Ti plates increased with Ti content, although the compositions of the two phases remained unchanged. When the over-aged alloys were drawn to the same deformation strain, the hardness and tensile strength of the wires increased monotonically with Ti content due to strain-induced strengthening; a high volume fraction of hard β-Cu4Ti fibers formed from laminating plates during drawing promoted a high dislocation density in the matrix. The electrical conductivity of the wires decreased gradually with Ti content due to the higher volume fraction of β-Cu4Ti fibers and due decomposition of the fibers during drawing. The overall performance of the Cu-Ti alloy wires improved as the Ti content increased and was superior to that of conventional Cu-Ti alloy wires fabricated by peak-aging and drawing, and to that of commercial Cu-Be alloy wires.

Notes

Acknowledgments

The authors thank Mr. I. Nakayoshi of Tokusen Kogyo Co. for sample preparation. The authors are grateful to Dr. E.A. Choi of the Korea Institute of Materials Science for useful discussions and comments. The authors also thank Dr. M. Ishikuro, Mr. E. Aoyagi, Mr. I. Nagano, Ms. Y. Matsuda, and Mr. Y. Kadoi of the Institute for Materials Research (IMR) of Tohoku University and Professor Iwase and Mr. T. Teshima of Osaka Prefecture University for their experimental assistance. This work was supported by a cooperative program of Collaborative Research and Development Center for Advanced Materials (CRDAM) in IMR (No. 18G0421). We gratefully acknowledge the financial support from the Japan Society for the Promotion of Science via a Grant-in-Aid for Scientific Research (B) (No. 18H01743) and from the Japan Copper and Brass Association.

References

  1. 1.
    A. Datta and W.A. Soffa: Acta Metall., 1976, vol. 24, pp. 987–1001.CrossRefGoogle Scholar
  2. 2.
    S. Nagarjuna, M. Srinivas, K. Balasubramanian, and D. S. Sarma: Acta Metall., 1996, vol. 44, pp. 2285–2293.Google Scholar
  3. 3.
    A.A. Hameda and L. Blaz: Mater. Sci. Eng. A, 1998, vol. 254, pp. 83–89.CrossRefGoogle Scholar
  4. 4.
    C. Borchers: Philos. Mag. A., 1999, vol. 79, pp.537–547.CrossRefGoogle Scholar
  5. 5.
    W.A. Soffa and D. E. Laughlin: Prog. Mater. Sci., 2004, vol. 49, pp. 347–366.CrossRefGoogle Scholar
  6. 6.
    D. Bozic, J. Stasic, J. Ruzic, M. Vilotijevic, and V. Rajkovic: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8139–8144.CrossRefGoogle Scholar
  7. 7.
    M. Sobhani, A. Mirhabibi, H. Arabi, and R.M.D. Brydson: Mater. Sci. Eng. A, 2013, vol. 577, pp. 16–22.CrossRefGoogle Scholar
  8. 8.
    J.A. Cornie, A. Datta, and W.A. Soffa: Metal. Trans., 1973, vol. 4, pp. 727–733.CrossRefGoogle Scholar
  9. 9.
    D.E. Laughlin and J.W. Cahn: Acta Metall., 1975, vol. 23, pp. 329–339.CrossRefGoogle Scholar
  10. 10.
    L.A. Nesbit and D.E. Laughlin: Acta Metall., 1978, vol. 26, pp. 815–825.CrossRefGoogle Scholar
  11. 11.
    W.A. Soffa and D.E. Laughlin: Acta Metall., 1989, vol. 37, pp. 3019–3028.CrossRefGoogle Scholar
  12. 12.
    R. Markandeya, S. Nagarjuna, and D.S. Sarma: Mater. Sci. Eng. A, 2004, vol. 371, pp. 291–305.CrossRefGoogle Scholar
  13. 13.
    I.S. Balta, A. Laik, G.B. Kale, G.K. Dey, and U.D. Kulkami: Mater. Sci. Eng. A, 2005, vol. 402, pp. 118–125.CrossRefGoogle Scholar
  14. 14.
    S. Semboshi, T. Nishida, H. Numakura, T. Al-Kassab, and R. Kirchheim: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2136–2143.CrossRefGoogle Scholar
  15. 15.
    S. Semboshi, S. Sato, M. Ishikuro, K. Wagatsuma, A. Iwase, and T. Takasugi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3401–3411.CrossRefGoogle Scholar
  16. 16.
    L. Si, L. Zhou, X. Zhu, L. Sanhua, S. Leinuo, and D. Qiyi: Mater. Sci. Eng. A, 2016, vol. 650, pp. 345–353.CrossRefGoogle Scholar
  17. 17.
    H. Wei, Y. Cui, H. Cui, Y. Wei, and L. Hou: Mater. Sci. Eng. A, 2017, vol. 707, pp. 392–398.CrossRefGoogle Scholar
  18. 18.
    S. Semboshi, S. Amano, J. Fu, A. Iwase, and T. Takasugi: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1501–1511.CrossRefGoogle Scholar
  19. 19.
    S. Semboshi, Y. Kaneno, T. Takasugi, and N. Masahashi: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4956–4964.CrossRefGoogle Scholar
  20. 20.
    R.C. Ecob, J.V. Bee, and B. Ralph: Phys. Status Solidi, 1979, vol. 52A, pp. 201–210.CrossRefGoogle Scholar
  21. 21.
    R.C. Ecob, J.V. Bee, and B. Ralph: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 1407–1414.CrossRefGoogle Scholar
  22. 22.
    R.W. Fonda and G.J. Shiflet: Scr. Metall., 1990, vol. 24, pp. 2259–2262.CrossRefGoogle Scholar
  23. 23.
    R.W. Fonda and G.J. Shiflet: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2507–2518.CrossRefGoogle Scholar
  24. 24.
    A.M. Elwazri, P. Wanjara, and S. Yue: Mater. Sci. Eng. A, 2005, vol. 404, pp. 91–98.CrossRefGoogle Scholar
  25. 25.
    S.W. Joung, U.G. Kang, S.P. Hong, Y.W. Kim, and W.J. Nam: Mater. Sci. Eng. A, 2013, vol. 586, pp. 171–177.CrossRefGoogle Scholar
  26. 26.
    Y. Li, D. Raabe, M. Herbig, P.P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, and R. Kirchheim: Phys. Rev. Lett., 2014, vol. 113, pp. 106104.CrossRefGoogle Scholar
  27. 27.
    A. Durgaprasad, S. Giri, S. Lenkaa, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty, and I. Samajdra: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4583–4597.CrossRefGoogle Scholar
  28. 28.
    C. Borchers, and R. Kirchheim: Prog. Mater.Sci., 2016, vol. 82, pp. 405–444.CrossRefGoogle Scholar
  29. 29.
    D. Nikas, X.D. Zhang, and J. Ahlstrom: Mater. Sci. Eng. A, 2018, vol. 737, pp. 341–347.CrossRefGoogle Scholar
  30. 30.
    Y. Sakai and H.-J. Schneider-Muntau: Acta Mater., 1997, vol. 45, pp. 1017–1023.CrossRefGoogle Scholar
  31. 31.
    Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4331–4336.CrossRefGoogle Scholar
  32. 32.
    C. Biselli and D.C. Morris: Acta Mater., 1996, vol. 44, pp. 493–504.CrossRefGoogle Scholar
  33. 33.
    Q. Feng, L. Song, Y. Zeng, Y. Fang, L. Meng, J. Liu, and H. Wang: J. Alloys Compd., 2015, vol. 640, pp. 45–50.CrossRefGoogle Scholar
  34. 34.
    J.Y. Brun, S.J. Hamar-Thibault, and C.H. Allibert: Z. Metallk., 1983, vol. 74, pp. 525–529.Google Scholar
  35. 35.
    H. Doi, S. Suzuki, K. Mimura, K. Isshiki, and Y. Waseda: J. Japan Inst. Met., 2004, vol. 68, pp. 78–81.CrossRefGoogle Scholar
  36. 36.
    S. Semboshi and T.J. Konno: J. Mater. Res., 2008, vol. 23, pp. 473–477.CrossRefGoogle Scholar
  37. 37.
    M.A. Turchanin, P.G. Agraval, and A.R. Abdulov: Powder Metall. Met. Ceram., 2008, vol. 47, pp. 344–360.CrossRefGoogle Scholar
  38. 38.
    S. Semboshi, M. Ishikuro, S. Sato, K. Wagatsuma, and T. Takasugi: Mater. Charact., 2013, vol. 82, pp. 23–31.CrossRefGoogle Scholar
  39. 39.
    S. Chen, Y.H. Duan, B. Huang, and W.C. Hu: Philos. Mag., 2015, vol. 95, pp. 3535–53.CrossRefGoogle Scholar
  40. 40.
    R. Landauer: J. Appl. Phys., 1952, vol. 23, pp. 779–784.CrossRefGoogle Scholar
  41. 41.
    J. Miyake and M.E. Fine: Acta Metall., 1992, vol. 40, pp. 733–741.CrossRefGoogle Scholar
  42. 42.
    S. Suzuki, K. Hirabayashi, H. Shibata, K. Mimura, M. Isshiki, and Y. Waseda: Scr. Mater., 2003, vol. 48, pp. 431–435.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Satoshi Semboshi
    • 1
    • 2
  • Yasuyuki Kaneno
    • 2
  • Takayuki Takasugi
    • 2
  • Sueng Zeon Han
    • 3
  • Naoya Masahashi
    • 1
    • 2
  1. 1.Institute for Materials ResearchTohoku UniversitySendaiJapan
  2. 2.Department of Materials ScienceOsaka Prefecture UniversitySakaiJapan
  3. 3.Korea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations