Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 556–561 | Cite as

Continuous Morphological Transition and Its Mechanism of Al3Ni Phase at the Liquid–Solid Interface During Solidification

  • Zongye Ding
  • Qiaodan HuEmail author
  • Wenquan Lu
  • Naifang Zhang
  • Xuan Ge
  • Sheng Cao
  • Tianxing Yang
  • Mingxu Xia
  • Jianguo Li


The morphological transition and growth mechanism of Al3Ni phase during solidification at the liquid Al/solid Ni interface was investigated through synchrotron radiography. The remelted peritectic Al3Ni is dominated by coalescence of adjacent grains and precipitation with the morphology changing from columnar, irregular, scallop type to faceted shape. The hollow proeutectic Al3Ni is formed on a solid base. The increased r/R ratio and steep variation lead to the change from regular to irregular hollowness with asymmetrical shape.


This work is supported by the National Key Research and Development Program (2017YFA0403800), National Natural Science Foundation of China (51374144, 51727802), Shanghai Municipal Natural Science Foundation (13ZR1420600), and Shanghai Rising-Star Program (14QA1402300). The support of synchrotron radiation phase-contrast imaging by the BL13W1 beam line of SSRF, China, is gratefully acknowledged.


  1. 1.
    W. Wołczyński, E. Guzik, J. Janczak-Rusch, D. Kopyciński, J. Golczewski, H.M. Lee, and J. Kloch: Mater. Charact., 2006, vol. 56, pp. 274–80.CrossRefGoogle Scholar
  2. 2.
    J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, and Z.A. Munir: Acta Mater., 2008, vol. 56, pp. 1840–48.CrossRefGoogle Scholar
  3. 3.
    G.A. López, S. Sommadossi, P. Zieba, W. Gust, and E.J. Mittemeijer: Mater. Chem. Phys., 2002, vol. 78, pp. 459–63.CrossRefGoogle Scholar
  4. 4.
    T.M. Wang, F. Cao, P. Zhou, H.J. Kang, Z.N. Chen, Y.N. Fu, T.Q. Xiao, W.X. Huang, and Q.X. Yuan: J. Alloys Compd., 2014, vol. 616, pp. 550–55.CrossRefGoogle Scholar
  5. 5.
    Z.Y. Ding, Q.D. Hu, W.Q. Lu, X. Ge, S. Cao, S.Y. Sun, T.X. Yang, M.X. Xia, and J.G. Li: J. Mater. Sci. Technol., in press.Google Scholar
  6. 6.
    G.A. López, S. Sommadossi, W. Gust, and E.J. Mittemeijer: Interface Sci., 2002, vol. 10, pp. 13–19.CrossRefGoogle Scholar
  7. 7.
    K. Bouché, F. Barbier, and A. Coulet: Z. Metallkd., 1997, vol. 88, pp. 446–51.Google Scholar
  8. 8.
    W. Wołczyński, T. Okane, C. Senderowski, B. Kania, D. Zasada, and J. Janczak-Rusch: Arch. Metall. Mater., 2011, vol. 56, pp. 311–23.Google Scholar
  9. 9.
    J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, and Z.A. Munir: Acta Mater., 2007, vol. 55, pp. 5592–5600.CrossRefGoogle Scholar
  10. 10.
    E.Y. Guo, A.B. Phillion, B. Cai, S.S. Shuai, D. Kazantsev, T. Jing, and P.D. Lee: Acta Mater., 2017, vol. 123, pp. 373–82.CrossRefGoogle Scholar
  11. 11.
    B. Cai, J. Wang, A. Kao, K. Pericleous, A.B. Phillion, R.C. Atwood, and P.D. Lee: Acta Mater., 2016, vol. 117, pp. 160–69.CrossRefGoogle Scholar
  12. 12.
    Z.Y. Ding, Q.D. Hu, W.Q. Lu, X. Ge, S. Cao, S.Y. Sun, T.X. Yang, M.X. Xia, and J.G. Li: Mater. Charact., 2018, vol. 136, pp. 157–64.CrossRefGoogle Scholar
  13. 13.
    Z.Y. Ding, Q.D. Hu, W.Q. Lu, S.Y. Sun, M.X. Xia, and J.G. Li: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1486–91.Google Scholar
  14. 14.
    G.P. Liu, Q.D. Wang, L. Zhang, B. Ye, H.Y. Jiang, and W.J. Ding: Metall. Mater. Trans. A, 2018, vol. 49A pp. 661–72.CrossRefGoogle Scholar
  15. 15.
    X. Li, Y. Fautrelle, Z.M. Ren, Y.D. Zhang, and C. Esling: Acta Mater., 2010, vol. 58, pp. 2430–41.CrossRefGoogle Scholar
  16. 16.
    D.M. Liu: PhD thesis, Harbin Institute of Technology, 2012.Google Scholar
  17. 17.
    Z.Y. Ding, Q.D. Hu, W.Q. Lu, S.Y. Sun, M.X. Xia, and J.G. Li: Scripta Mater., 2017, vol. 130, pp. 214–18.CrossRefGoogle Scholar
  18. 18.
    H. Okamoto: J. Phase Equilibria, 1993, vol. 14, pp. 652–53.CrossRefGoogle Scholar
  19. 19.
    W. Kurz and D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1998.Google Scholar
  20. 20.
    Z.Y. Ding, Q.D. Hu, W.Q. Lu, X.W. Xu, X. Ge, S. Cao, T.X. Yang, H.H. Ge, M.X. Xia, and J.G. Li: Metall. Mater. Trans. A, 2018. Scholar
  21. 21.
    H.K. Kim and K.N. Tu: Phys. Rev. B, 1996, vol. 53, pp. 16027–16034.CrossRefGoogle Scholar
  22. 22.
    A.J. Bradley and A. Taylor: Philos. Mag., 1937, vol. 23, pp. 1049–67.CrossRefGoogle Scholar
  23. 23.
    X. Li, Y. Fautrelle, A. Gagnoud, R. Moreau, D.F. Du, Z.M. Ren, and X.G. Lu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1180–97.CrossRefGoogle Scholar
  24. 24.
    W.K. Burton, N. Cabrera, and F.C. Frank: Nature, 1949, vol. 163, p. 398.CrossRefGoogle Scholar
  25. 25.
    A.R. Verma: Nature, 1951, vol. 167, p. 939.CrossRefGoogle Scholar
  26. 26.
    F. Meng, S.A. Morin, A. Forticaux, and S. Jin: Accounts Chem. Res., 2013, vol. 46, pp. 1616–26.CrossRefGoogle Scholar
  27. 27.
    S.A. Morin, M.J. Bierman, J. Tong, and S. Jin: Science, 2010, vol. 328, pp. 476–80.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Zongye Ding
    • 1
  • Qiaodan Hu
    • 1
    Email author
  • Wenquan Lu
    • 1
  • Naifang Zhang
    • 1
  • Xuan Ge
    • 1
  • Sheng Cao
    • 2
  • Tianxing Yang
    • 1
  • Mingxu Xia
    • 1
  • Jianguo Li
    • 1
  1. 1.Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.Monash Centre for Additive Manufacturing (MCAM)Monash UniversityClaytonAustralia

Personalised recommendations