Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 590–600 | Cite as

Deformation-Induced Dynamic Ferrite Transformation During Hot-Rolling in Oxide Dispersion-Strengthened Ferritic Steel with 9 Wt Pct Cr Content

  • Shoki KasaiEmail author
  • S. Ukai
  • T. Yamashiro
  • S. Zhang
  • N. Oono
  • S. Hayashi
  • S. Ohtsuka
  • H. Sakasegawa


9CrODS steel, a candidate fission and fusion structural material, was subjected to hot-rolling with varying parameters of surface temperature and cooling rate just after hot-rolling. The deformation-induced dynamic ferrite transformation was confirmed at the rolling temperature 805 °C above Ar3 (780 °C). This transformation exhibits three characteristic features: transformation for extremely short duration (0.044 second), retaining carbon content equal to the original without long-distance carbon diffusion, and elongated coarse ferrite grains (10 μm). The massive transformation was proposed for the dynamic ferrite transformation from the hot-rolled austenite. The driving force for massive transformation was quantitatively estimated considering dislocations accumulated by hot-rolling. It was also shown that the oxide particles in 9CrODS steel play a critical role for dynamic ferrite transformation by suppressing the dynamic recrystallization at hot-rolling.



The authors thank Dr. R. Kayano and Mr. E. Maeda of Japan Steel Works, Ltd. (JSW) for conducting hot-rolling. This work was supported by Grant-in-Aid for Scientific Research (Challenging Exploratory Research), 15K14172, Japan Society for the Promotion of Science (JSPS). This work was conducted at Hokkaido University, supported by the “Nanotechnology Platform” Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.


  1. 1.
    Y. de Carlan, J.-L. Bechade, P. Dubuisson, J.-L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. Leblond and M.H. Mathon: J. Nucl. Mater., 2009, vols. 386–388, pp. 430–32.Google Scholar
  2. 2.
    S.Ohtsuka, S.Ukai and M.Fujiwara, J. Nucl. Mater., 2006, vol. 351, p. 241.CrossRefGoogle Scholar
  3. 3.
    R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, K. Miyahara. J. Nucl. Mater., 2002, vols. 307-311, pp. 773-777.CrossRefGoogle Scholar
  4. 4.
    Z. Oksiuta, P. Olier, Y. de Carlan, N. Baluc. J. Nucl. Mater., 2009, vol. 393, pp. 114-119.CrossRefGoogle Scholar
  5. 5.
    A.G. Certain, K.G. Field, T.R. Allen, M.K. Miller, J. Bentley, J.T. Busby, J. Nucl. Mater., 2010, vol. 407, pp. 2-9.CrossRefGoogle Scholar
  6. 6.
    S. Ukai: Oxide Dispersion Strengthened Steels, Comprehensive Nuclear Materials, 2011, vol. 4, ISBN 978-0-08-056027-4.Google Scholar
  7. 7.
    S. Ukai, S. Ohtsuka, T. Kaito, Y. de Carlan, U. Ribis and J. Malaplate: Dispersion-Strengthened/Ferrite-Martensite Steels as Core Materials for Generation IV Nuclear Reactors, P. Yvon, ed., Woodhead Publishing, 2017, ISBN 978-0-08-100912-3.Google Scholar
  8. 8.
    L. Toualbi, C. Cayron, P.Olier, J.Malaplate, M.Praud, M.-H. Mathon, D. Bossu, E.Rouesne, A. Montani, R. Loge, Y. de Carlan, J. Nucl. Mater., 2012, vol. 428, pp. 47-53.CrossRefGoogle Scholar
  9. 9.
    P. Dubuisson, Y. de Carlan, V. Garat, M. Blat, J. Nucl. Mater., 2012, vol. 428, pp. 6-12.CrossRefGoogle Scholar
  10. 10.
    S. Ukai and M.Fujiwara, J.Nucl.Mater., 2002, vols. 307-311, pp. 749-757.CrossRefGoogle Scholar
  11. 11.
    G.R. Odette, M.J. Alinger and B.D. Wirth, Annual Review of Materials Research, 2008, vol. 38, pp. 471-503.CrossRefGoogle Scholar
  12. 12.
    S. Ukai, R. Miyata, S. Kasai, N. Oono, S. Hayashi, T. Azuma, R. Kayano, E. Maeda, S. Ohtsuka, Materials Letters, 2017, vol. 209, pp. 581-584.CrossRefGoogle Scholar
  13. 13.
    M. R. Hickson, R. K. Gibbs and P. D. Hodgson: ISIJ Int., 1999, vol. 39, p. 1176.CrossRefGoogle Scholar
  14. 14.
    W.-Y. Choo, K.K. Um, J.S. Lee, D.H. Seo and J.K. Choi: International Symposium on Ultrafine Grained Steels, ISIJ, Tokyo, Japan, vol. 2, 2001.Google Scholar
  15. 15.
    H. Dong: International Symposium on Ultrafine Grained Steels, ISIJ, Tokyo, Japan, vol. 18, 2001.Google Scholar
  16. 16.
    R. Priestner, Y. M. Al-Horr and A. K. Ibraheem, Mater. Sci. Technol., 2002, vol. 18, p 973.CrossRefGoogle Scholar
  17. 17.
    T. Hasegawa, Y. Tomita and A. Kohyama, J. Nucle. Mater., 1998, vols. 258-263, pp. 1153-1157.CrossRefGoogle Scholar
  18. 18.
    R.L. Klueh, N. Hashimoto and P.J. Maziasz, J. Nucle. Mater., 2007, vols. 367-370 pp. 48-53.CrossRefGoogle Scholar
  19. 19.
    S. Hollner, B. Fournier, J. Le Pendu, et al.: J. Nucl. Mater., 2010, vol. 405, pp. 101–08.Google Scholar
  20. 20.
    T.S. Byun, J.H. Yoon, D.T. Hoelzer, et al., J. Nucl. Mater., 2014, vol. 449, pp. 290-299.CrossRefGoogle Scholar
  21. 21.
    W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates: Calphad 33, 2009, pp. 328-342.CrossRefGoogle Scholar
  22. 22.
    Thermomechanical Processing of High Strength Low Alloy Steels, I. Tamura et al., eds., Butterworths, Boston, 1988.Google Scholar
  23. 23.
    I.L. Dillamore, C. J.E. Smith and T. W.Watson, Metal Sci. J.,1967, vol. 1, p. 49.CrossRefGoogle Scholar
  24. 24.
    H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater., 2006, vol. 54, pp. 1279-1288.CrossRefGoogle Scholar
  25. 25.
    T. Tomita and M. Wakita: Tetsu-to-Hagane, 2011, vol. 97(4), 230–37.Google Scholar
  26. 26.
    H. Yada, Y. Matsumura, and T. Senuma: JIM, 1986, p. 515.Google Scholar
  27. 27.
    C. Ghosh, V.V. Basabe, J.J. Jonas, Materials Science and Engineering A, 2014, vol. 591, pp. 173-182.CrossRefGoogle Scholar
  28. 28.
    C. Ghosh, V.V. Basabe, J.J. Jonas, et al., Acta Materialia, 2013, vol. 61, pp. 2348-2362.CrossRefGoogle Scholar
  29. 29.
    N. Park, A. Shibata, D. Terada, N. Tsuji, Acta Materialia, 2013, vol. 61, pp. 163-173.CrossRefGoogle Scholar
  30. 30.
    R. Priestner: Proceedings of an International Conference on the Thermomechanical Processing of Microalloyed Austenite, Metallurgical Society of AIME, 1981, p. 455.Google Scholar
  31. 31.
    Y. Matsumura, H. Yada, Trans ISIJ, 1987, vol. 27 pp. 492–498.CrossRefGoogle Scholar
  32. 32.
    R. Willms: Nordic Steel Construction Conference—NSCC, 2009.Google Scholar
  33. 33.
    R. Pandi, S. Yue, ISIJ Int, 1994, vol. 34(3), pp. 270-279.CrossRefGoogle Scholar
  34. 34.
    H. Yada, CM. Li, H. Yamagata, ISIJ Int, 2000, vol. 40(2), pp. 200–206.CrossRefGoogle Scholar
  35. 35.
    H. Dong and XJ. Sun, Current Opinion in Solid State and Materials Science, 2005, vol. 9, pp. 269-276.CrossRefGoogle Scholar
  36. 36.
    Z.M. Yang, R.Z. Wang, ISIJ Int, 2003, vol. 43(5), pp. 761–766.CrossRefGoogle Scholar
  37. 37.
    Z.Q. Sun, W.Y. Yang, A.M. Hu, P. Yang, Acta Metall., 2001, vol. 14(2), pp. 115–121.Google Scholar
  38. 38.
    J.J. Qi, W.Y. Yang, Z.Q. Sun, Acta Mater., 2005, vol. 41(6) pp. 605–610.Google Scholar
  39. 39.
    W.Y. Choo, J.S. Lee, C.S. Lee, J.K. Choi. CAMP-ISIJ, 2000, vol. 13, pp. 1144.Google Scholar
  40. 40.
    C. Wells, W. Batz and R. F. Mehl, Trans. AIME, 1950, vol. 188, pp. 553.Google Scholar
  41. 41.
    J.K. Park, K.H. Kim, J.H. Chung and S.Y. Ok, Metallurgical and Materials Transaction, 2008, vol. 39A, pp. 235-242.CrossRefGoogle Scholar
  42. 42.
    H.L. Aaronson, S. Mahajan, G.R. Purdy and M.G. Hall, Metallurgical and Materials Transaction, 2002, vol. 33A, pp. 2347-2351.CrossRefGoogle Scholar
  43. 43.
    M. Hillert and L. Hoglund, Scripta Materiala, 2006, vol. 54, pp. 1259-1263.CrossRefGoogle Scholar
  44. 44.
    M. Hillert, Metallurgical and Materials Transaction, 2002, vol. 33A, pp. 2299-2308.CrossRefGoogle Scholar
  45. 45.
    J. Zhu, H. Luo, Z. Yang, C. Zhang, Sybrand van der Zwaag and H. Chen, Acta Materialia, 2017, vol. 133, pp. 258-268.CrossRefGoogle Scholar
  46. 46.
    T.B. Massalski, Phase transformation, ASM, Metals Park, Ohio, 1970, pp. 433.Google Scholar
  47. 47.
    H.K.D.H. Bhadeshia, Progress in Materials Science, 1985, vol. 29, pp. 321-386.CrossRefGoogle Scholar
  48. 48.
    T.B. Massalski, Acta metall., 1958, vol.6, p. 243.CrossRefGoogle Scholar
  49. 49.
    D.A. Karlyn, J.W. Cahn and M. Cohen, TMS-AIME, 1969, vol. 245, p. 197.Google Scholar
  50. 50.
    H.I. Aaronson, C. Laird and K.R. Kinsman, Scr. Metall., 1968, vol. 2, p. 259.CrossRefGoogle Scholar
  51. 51.
    M. Hillert, Metall. Trans. A, 1975, vol. 6A, p. 5.CrossRefGoogle Scholar
  52. 52.
    Y. Adachi, P.G. Xu and Y. Tomota: ISIJ Int., 2008, vol. 48(8), pp. 1056–62.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Shoki Kasai
    • 1
    Email author
  • S. Ukai
    • 2
  • T. Yamashiro
    • 1
  • S. Zhang
    • 1
  • N. Oono
    • 2
  • S. Hayashi
    • 2
  • S. Ohtsuka
    • 3
  • H. Sakasegawa
    • 4
  1. 1.Graduate School of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Faculty of EngineeringHokkaido UniversitySapporoJapan
  3. 3.Japan Atomic Energy AgencyOaraiJapan
  4. 4.National Institutes for Quantum and Radiological Science and TechnologyRokkasyoJapan

Personalised recommendations