Skip to main content
Log in

Deformation-Induced Dynamic Ferrite Transformation During Hot-Rolling in Oxide Dispersion-Strengthened Ferritic Steel with 9 Wt Pct Cr Content

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

9CrODS steel, a candidate fission and fusion structural material, was subjected to hot-rolling with varying parameters of surface temperature and cooling rate just after hot-rolling. The deformation-induced dynamic ferrite transformation was confirmed at the rolling temperature 805 °C above Ar3 (780 °C). This transformation exhibits three characteristic features: transformation for extremely short duration (0.044 second), retaining carbon content equal to the original without long-distance carbon diffusion, and elongated coarse ferrite grains (10 μm). The massive transformation was proposed for the dynamic ferrite transformation from the hot-rolled austenite. The driving force for massive transformation was quantitatively estimated considering dislocations accumulated by hot-rolling. It was also shown that the oxide particles in 9CrODS steel play a critical role for dynamic ferrite transformation by suppressing the dynamic recrystallization at hot-rolling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. de Carlan, J.-L. Bechade, P. Dubuisson, J.-L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. Leblond and M.H. Mathon: J. Nucl. Mater., 2009, vols. 386–388, pp. 430–32.

  2. S.Ohtsuka, S.Ukai and M.Fujiwara, J. Nucl. Mater., 2006, vol. 351, p. 241.

    Article  Google Scholar 

  3. R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, K. Miyahara. J. Nucl. Mater., 2002, vols. 307-311, pp. 773-777.

    Article  Google Scholar 

  4. Z. Oksiuta, P. Olier, Y. de Carlan, N. Baluc. J. Nucl. Mater., 2009, vol. 393, pp. 114-119.

    Article  Google Scholar 

  5. A.G. Certain, K.G. Field, T.R. Allen, M.K. Miller, J. Bentley, J.T. Busby, J. Nucl. Mater., 2010, vol. 407, pp. 2-9.

    Article  Google Scholar 

  6. S. Ukai: Oxide Dispersion Strengthened Steels, Comprehensive Nuclear Materials, 2011, vol. 4, ISBN 978-0-08-056027-4.

  7. S. Ukai, S. Ohtsuka, T. Kaito, Y. de Carlan, U. Ribis and J. Malaplate: Dispersion-Strengthened/Ferrite-Martensite Steels as Core Materials for Generation IV Nuclear Reactors, P. Yvon, ed., Woodhead Publishing, 2017, ISBN 978-0-08-100912-3.

  8. L. Toualbi, C. Cayron, P.Olier, J.Malaplate, M.Praud, M.-H. Mathon, D. Bossu, E.Rouesne, A. Montani, R. Loge, Y. de Carlan, J. Nucl. Mater., 2012, vol. 428, pp. 47-53.

    Article  Google Scholar 

  9. P. Dubuisson, Y. de Carlan, V. Garat, M. Blat, J. Nucl. Mater., 2012, vol. 428, pp. 6-12.

    Article  Google Scholar 

  10. S. Ukai and M.Fujiwara, J.Nucl.Mater., 2002, vols. 307-311, pp. 749-757.

    Article  Google Scholar 

  11. G.R. Odette, M.J. Alinger and B.D. Wirth, Annual Review of Materials Research, 2008, vol. 38, pp. 471-503.

    Article  Google Scholar 

  12. S. Ukai, R. Miyata, S. Kasai, N. Oono, S. Hayashi, T. Azuma, R. Kayano, E. Maeda, S. Ohtsuka, Materials Letters, 2017, vol. 209, pp. 581-584.

    Article  Google Scholar 

  13. M. R. Hickson, R. K. Gibbs and P. D. Hodgson: ISIJ Int., 1999, vol. 39, p. 1176.

    Article  Google Scholar 

  14. W.-Y. Choo, K.K. Um, J.S. Lee, D.H. Seo and J.K. Choi: International Symposium on Ultrafine Grained Steels, ISIJ, Tokyo, Japan, vol. 2, 2001.

  15. H. Dong: International Symposium on Ultrafine Grained Steels, ISIJ, Tokyo, Japan, vol. 18, 2001.

  16. R. Priestner, Y. M. Al-Horr and A. K. Ibraheem, Mater. Sci. Technol., 2002, vol. 18, p 973.

    Article  Google Scholar 

  17. T. Hasegawa, Y. Tomita and A. Kohyama, J. Nucle. Mater., 1998, vols. 258-263, pp. 1153-1157.

    Article  Google Scholar 

  18. R.L. Klueh, N. Hashimoto and P.J. Maziasz, J. Nucle. Mater., 2007, vols. 367-370 pp. 48-53.

    Article  Google Scholar 

  19. S. Hollner, B. Fournier, J. Le Pendu, et al.: J. Nucl. Mater., 2010, vol. 405, pp. 101–08.

  20. T.S. Byun, J.H. Yoon, D.T. Hoelzer, et al., J. Nucl. Mater., 2014, vol. 449, pp. 290-299.

    Article  Google Scholar 

  21. W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W.A. Oates: Calphad 33, 2009, pp. 328-342.

    Article  Google Scholar 

  22. Thermomechanical Processing of High Strength Low Alloy Steels, I. Tamura et al., eds., Butterworths, Boston, 1988.

  23. I.L. Dillamore, C. J.E. Smith and T. W.Watson, Metal Sci. J.,1967, vol. 1, p. 49.

    Article  Google Scholar 

  24. H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater., 2006, vol. 54, pp. 1279-1288.

    Article  Google Scholar 

  25. T. Tomita and M. Wakita: Tetsu-to-Hagane, 2011, vol. 97(4), 230–37.

  26. H. Yada, Y. Matsumura, and T. Senuma: JIM, 1986, p. 515.

  27. C. Ghosh, V.V. Basabe, J.J. Jonas, Materials Science and Engineering A, 2014, vol. 591, pp. 173-182.

    Article  Google Scholar 

  28. C. Ghosh, V.V. Basabe, J.J. Jonas, et al., Acta Materialia, 2013, vol. 61, pp. 2348-2362.

    Article  Google Scholar 

  29. N. Park, A. Shibata, D. Terada, N. Tsuji, Acta Materialia, 2013, vol. 61, pp. 163-173.

    Article  Google Scholar 

  30. R. Priestner: Proceedings of an International Conference on the Thermomechanical Processing of Microalloyed Austenite, Metallurgical Society of AIME, 1981, p. 455.

  31. Y. Matsumura, H. Yada, Trans ISIJ, 1987, vol. 27 pp. 492–498.

    Article  Google Scholar 

  32. R. Willms: Nordic Steel Construction Conference—NSCC, 2009.

  33. R. Pandi, S. Yue, ISIJ Int, 1994, vol. 34(3), pp. 270-279.

    Article  Google Scholar 

  34. H. Yada, CM. Li, H. Yamagata, ISIJ Int, 2000, vol. 40(2), pp. 200–206.

    Article  Google Scholar 

  35. H. Dong and XJ. Sun, Current Opinion in Solid State and Materials Science, 2005, vol. 9, pp. 269-276.

    Article  Google Scholar 

  36. Z.M. Yang, R.Z. Wang, ISIJ Int, 2003, vol. 43(5), pp. 761–766.

    Article  Google Scholar 

  37. Z.Q. Sun, W.Y. Yang, A.M. Hu, P. Yang, Acta Metall., 2001, vol. 14(2), pp. 115–121.

    Google Scholar 

  38. J.J. Qi, W.Y. Yang, Z.Q. Sun, Acta Mater., 2005, vol. 41(6) pp. 605–610.

    Google Scholar 

  39. W.Y. Choo, J.S. Lee, C.S. Lee, J.K. Choi. CAMP-ISIJ, 2000, vol. 13, pp. 1144.

    Google Scholar 

  40. C. Wells, W. Batz and R. F. Mehl, Trans. AIME, 1950, vol. 188, pp. 553.

    Google Scholar 

  41. J.K. Park, K.H. Kim, J.H. Chung and S.Y. Ok, Metallurgical and Materials Transaction, 2008, vol. 39A, pp. 235-242.

    Article  Google Scholar 

  42. H.L. Aaronson, S. Mahajan, G.R. Purdy and M.G. Hall, Metallurgical and Materials Transaction, 2002, vol. 33A, pp. 2347-2351.

    Article  Google Scholar 

  43. M. Hillert and L. Hoglund, Scripta Materiala, 2006, vol. 54, pp. 1259-1263.

    Article  Google Scholar 

  44. M. Hillert, Metallurgical and Materials Transaction, 2002, vol. 33A, pp. 2299-2308.

    Article  Google Scholar 

  45. J. Zhu, H. Luo, Z. Yang, C. Zhang, Sybrand van der Zwaag and H. Chen, Acta Materialia, 2017, vol. 133, pp. 258-268.

    Article  Google Scholar 

  46. T.B. Massalski, Phase transformation, ASM, Metals Park, Ohio, 1970, pp. 433.

    Google Scholar 

  47. H.K.D.H. Bhadeshia, Progress in Materials Science, 1985, vol. 29, pp. 321-386.

    Article  Google Scholar 

  48. T.B. Massalski, Acta metall., 1958, vol.6, p. 243.

    Article  Google Scholar 

  49. D.A. Karlyn, J.W. Cahn and M. Cohen, TMS-AIME, 1969, vol. 245, p. 197.

    Google Scholar 

  50. H.I. Aaronson, C. Laird and K.R. Kinsman, Scr. Metall., 1968, vol. 2, p. 259.

    Article  Google Scholar 

  51. M. Hillert, Metall. Trans. A, 1975, vol. 6A, p. 5.

    Article  Google Scholar 

  52. Y. Adachi, P.G. Xu and Y. Tomota: ISIJ Int., 2008, vol. 48(8), pp. 1056–62.

Download references

Acknowledgments

The authors thank Dr. R. Kayano and Mr. E. Maeda of Japan Steel Works, Ltd. (JSW) for conducting hot-rolling. This work was supported by Grant-in-Aid for Scientific Research (Challenging Exploratory Research), 15K14172, Japan Society for the Promotion of Science (JSPS). This work was conducted at Hokkaido University, supported by the “Nanotechnology Platform” Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoki Kasai.

Additional information

Manuscript submitted date May 25, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasai, S., Ukai, S., Yamashiro, T. et al. Deformation-Induced Dynamic Ferrite Transformation During Hot-Rolling in Oxide Dispersion-Strengthened Ferritic Steel with 9 Wt Pct Cr Content. Metall Mater Trans A 50, 590–600 (2019). https://doi.org/10.1007/s11661-018-5056-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5056-7

Navigation