Advertisement

Surface Properties of Liquid Al-Si Alloys

  • M. Takahashi
  • D. Giuranno
  • E. Ricci
  • E. Arato
  • R. M. Novakovic
Article
  • 42 Downloads

Abstract

The present work is aimed to highlight the interfacial properties (surface tension and wettability) of metallic systems involved in the additive manufacturing processing (AM) and their importance for design and development of new candidate materials as it has been already done in the field of joining processes (soldering, brazing, welding). The surface properties of Al-12.6Si (in wt pct) alloy, taken as a reference alloy of a class of additive manufacturing Al-Si based alloys, were investigated. The contact angles of pure Al and of Al-12.6Si alloy in contact with Al2O3 substrates were obtained by applying the sessile drop method under different working atmospheres. The new reference data on the wetting properties of the Al-12.6Si/Al2O3 system can be useful for design and development of new Al-Si-based alloys to be used in AM. The surface tension and the surface segregation of liquid Al-Si alloys were calculated as functions of composition by using Butler’s model and the results obtained were compared to available literature data.

Notes

Acknowledgment

The authors wish to thank the technical support by Mr. F. Mocellin.

References

  1. 1.
    Nicholas M.G.,Mortimer D.A.: Mat.Sci.Technol.1985,vol.1(9), pp.657-665.CrossRefGoogle Scholar
  2. 2.
    Mortensen A.: Mat.Sci. Eng. A,1991,vol.135,pp.1-11CrossRefGoogle Scholar
  3. 3.
    Matsumoto T., Nogi K.: Ann.Rev. Mat. Res., 2008, vol.38(1), pp. 251-273.CrossRefGoogle Scholar
  4. 4.
    T. Kimura, T. Nakamoto: J. Jpn. Soc. Powder Metall., 2014, vol.61(11), pp. 531-537.CrossRefGoogle Scholar
  5. 5.
    D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe: Int. Mater. Rev., 2012, 57 (3),pp. 133-164CrossRefGoogle Scholar
  6. 6.
    T. DebRoy, H.L. Wei, J.S.Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang: Prog. Mater Sci., 2018, vol.92, pp.112-224.CrossRefGoogle Scholar
  7. 7.
    J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Meyer, T.A. Schaedler, T.M. Pollock: Nature, 2017, vol.549, pp.365-369.CrossRefGoogle Scholar
  8. 8.
    M. Wong, S.Tsopanos, C. Sutcliffe, L. Owen: Rapid Prototyping Journal, 2007, vol.13, pp. 291-297.CrossRefGoogle Scholar
  9. 9.
    T. Vilaro, S. Abed and W. Knapp: Proceedings of 12th European Forum on Rapid Prototyping, Paris, AFPR 2008.Google Scholar
  10. 10.
    E. Louvis, P. Fox, C. Sutcliffe: J. Mater. Process. Technol., 2011, 211, 275–284.CrossRefGoogle Scholar
  11. 11.
    N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt: Mater.Sci. Eng., 2016, vol. A667, pp. 139-146.CrossRefGoogle Scholar
  12. 12.
    J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto: Acta Mater., 2016,vol.117, pp.311-320.CrossRefGoogle Scholar
  13. 13.
    H. Zhang, H. Zhu, T. Qi, Z, Hu, X. Zheng: Mater. Sci. Engn. A., 2016, vol.656, pp. 47-54.CrossRefGoogle Scholar
  14. 14.
    K.G. Prashanth, S. Scudino, H.J. Klauss, K.B.Surreddi, L. Löber, Z.Wang, A.K. Chaubey, U. Kuhn, J. Eckert: Mater. Sci. Eng. A., 2014, vol. 590, pp 153-160.CrossRefGoogle Scholar
  15. 15.
    N. Read, W. Wang, K. Essa, M.M. Attallah: Mater. Des., 2015, vol. 65, pp. 417–424.CrossRefGoogle Scholar
  16. 16.
    D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E.P. Ambrosio, S. Biamino, D. Ugues, M. Pavese and P. Fino: Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs), W.A. Monteiro, eds., InTech; Rijeka, Croatia, 2014, pp. 3–34.Google Scholar
  17. 17.
    F. Abe, K. Osakada, M. Shiomi, K. Umematsu, M. Matsumoto: J. Mater. Process. Technol., 2001, vol. 111, pp. 210-213.CrossRefGoogle Scholar
  18. 18.
    D. Buchbinder, W. Meiners, K. Wissenbach, R.Poprawe: J. Laser Applic., 2015, 27, 9205.CrossRefGoogle Scholar
  19. 19.
    E. Ricci, E. Arato, A. Passerone, P. Costa, Adv. Colloid Interface Sci., 2005, vol. 117(1-3), pp. 15-32.CrossRefGoogle Scholar
  20. 20.
    D. Gu: Laser Additive Manufacturing of High-Performance Materials, Springer-Verlag Berlin Heidelberg, 2015, pp.52-53.Google Scholar
  21. 21.
    N. Eustathopoulos, M. Nicholas and B. Drevet: Wettability at high temperatures, 1st ed., Pergamon Materials Series vol. 3, Oxford, 1999.Google Scholar
  22. 22.
    N. Eustathopoulos, N. Sobczak, A. Passerone, K.Nogi: J Mater Sci. 2005, vol. 40(9-10), pp.2271-2280.CrossRefGoogle Scholar
  23. 23.
    J.G. Li: Rare Met., 1991, vol.10, pp. 255-261.Google Scholar
  24. 24.
    D.Giuranno,E. Ricci, E. Arato, P. Costa : Acta Mater., 2006, vol.54, pp 2625–2630. .CrossRefGoogle Scholar
  25. 25.
    P. Shen, H. Fuji, K. Nogi: Mater. Trans., 2004, 45(9), 2857-2863.CrossRefGoogle Scholar
  26. 26.
    B.J. Keene: Int. Mater. Rev., 1993, vol. 38 (4), pp. 157-192.CrossRefGoogle Scholar
  27. 27.
    K.C. Mills, Y.C. Su: Int. Mater. Rev., 2006, vol.51 (6), pp. 329-351.CrossRefGoogle Scholar
  28. 28.
    B. J. Keene: The surface tension of tin and its alloys with particular reference to solders, TW 11,National Physical Laboratory, UK, 1993.Google Scholar
  29. 29.
    T. Iida, R.I.L. Guthrie: The physical properties of liquid metals, 1st ed. Clarendon Press, Oxford, 1993.Google Scholar
  30. 30.
    J.A.V. Butler: Proc. Royal Soc. A. 1932, vol.135, pp. 348-375.CrossRefGoogle Scholar
  31. 31.
    T.B. Massalski: Binary Alloy Phase Diagrams, 2nd ed Vols. 1–3, P.R. Subramanian, H. Okamoto, L. Kacprzak (Eds.), ASM, International Materials Park, OH, 1990, p.165.Google Scholar
  32. 32.
    J.L. Murray, A.J. McAlister: Bulletin of Alloy Phase Diagrams, 1984, vol.5(1), pp.74-84.CrossRefGoogle Scholar
  33. 33.
    D.S. Kanibolotsky, O.A. Bieloborodova, N.V. Kotova, V.V. Lisnyak: J. Therm. Anal. Calorim., 2002, vol.70(3), pp. 975-983.CrossRefGoogle Scholar
  34. 34.
    J.C. Zhao, L.A. Peluso, M.R. Jackson, L. Tan: J. Alloys Compd., 2003, vol. 360(1), pp. 183-188.CrossRefGoogle Scholar
  35. 35.
    C.Y. He, Y. Du, H.L. Chen, H. Xu: Calphad, 2009, vol. 33(1), pp. 200-210.CrossRefGoogle Scholar
  36. 36.
    E. Povoden-Karadeniz, P. Lang, P. Warczok, A. Falahati, J. Wu, E. Kozeschnik: Calphad, 2013, vol. 43(12), pp. 94-104.CrossRefGoogle Scholar
  37. 37.
    T. Tanaka, K. Hack, S. Hara: MRS Bull., 1999, vol. 24(4), pp. 45-50.CrossRefGoogle Scholar
  38. 38.
    H. Kobatake, J. Brillo, J. Schmitz, P. Pichon: J. Mater. Sci., 2015, vol. 50(9), pp. 3351-3360.CrossRefGoogle Scholar
  39. 39.
    S. Amore, D. Giuranno, R. Novakovic, E. Ricci, R. Nowak, N. Sobczak: Calphad, 2014, vol. 44, pp. 95-101.CrossRefGoogle Scholar
  40. 40.
    S. M. Chathoth, B. Damaschke, K. Samwer, S. Schneider: J. Appl. Phys., 2009, vol. 106, p.103524.CrossRefGoogle Scholar
  41. 41.
    K. Nogi: Technology for production of high quality crystal, Report, Nedo, Tokyo, Japan, 1998.Google Scholar
  42. 42.
    S. Kimura, K. Terachima: J. Cryst. Growth, 1997, vol. 180, pp. 323-333.CrossRefGoogle Scholar
  43. 43.
    X. Huang, S. Togawa, S. Chung, K. Terashima, S. Kimura: J. Cryst. Growth, 1995, vol. 156, pp. 52-58.CrossRefGoogle Scholar
  44. 44.
    N. Eustathopoulos, B. Drevet: J. Cryst. Growth, 2013, vol. 371, pp. 77-83.CrossRefGoogle Scholar
  45. 45.
    L. Goumiri, J. Joud: Acta Metall., 1982, vol. 30(7), pp. 1397-1405.CrossRefGoogle Scholar
  46. 46.
    A. Pamies, C. Garcia Cordovilla, E. Louis: Scr. Metall., 1984, vol.18(9), pp. 869-872.CrossRefGoogle Scholar
  47. 47.
    C. Garcia-Cordovilla, E. Louis, A. Pamies: J. Mater. Sci., 1986, vol. 21(8), pp. 2787-2792.CrossRefGoogle Scholar
  48. 48.
    J.P. Anson, R.A.L. Drew, J.E. Gruzleski: Metall. Mater. Trans. B, 1999, vol. 30(6), pp. 1027-1032.CrossRefGoogle Scholar
  49. 49.
    V. Sarou-Kanian: Int. J. Thermophys., 2003, vol. 24(l), pp. 277-286.CrossRefGoogle Scholar
  50. 50.
    J.M. Molina, R. Voytovych, E. Louis, N. Eustathopoulos: Int. J. Adhesion & Adhesives, 2007, vol. 27, pp. 394-401.CrossRefGoogle Scholar
  51. 51.
    [51] I. Egry, E. Ricci, R. Novakovic, S. Ozawa: Adv. Colloid Interface Sci., 2010, vol. 159(2), pp. 198-212.CrossRefGoogle Scholar
  52. 52.
    I. Egry, D. Holland-Moritz, R. Novakovic, E. Ricci, R Wunderlich, N Sobczak: Int. J. Thermophys., 2010, vol. 31(4-5), pp. 949-965.CrossRefGoogle Scholar
  53. 53.
    C. Garcia-Cordovilla, E. Louis, A. Pamies: J. Mater. Sci., 1992, vol. 27(19), pp. 5247-5252.CrossRefGoogle Scholar
  54. 54.
    J.G. Li, L. Coudurier, N. Eustathopoulos: J. Mater. Sci., 1989, vol. 24, pp. 1109-1116.CrossRefGoogle Scholar
  55. 55.
    R. Novakovic, D. Giuranno, E. Ricci, T. Lanata: Surf. Sci., 2008, vol. 602(11), pp. 1957-1963.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • M. Takahashi
    • 1
  • D. Giuranno
    • 2
  • E. Ricci
    • 2
  • E. Arato
    • 2
    • 3
  • R. M. Novakovic
    • 2
  1. 1.Department of Materials Science and Engineering School of Materials and Chemical TechnologyTokyo Institute of TechnologyTokyoJapan
  2. 2.Institute of Condensed Matter Chemistry and Energy TechnologiesNational Research Council, (ICMATE-CNR)GenoaItaly
  3. 3.Department of Civil, Chemical and Environmental EngineeringUniversity of GenoaGenoaItaly

Personalised recommendations