Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 733–745 | Cite as

Influence of Rotation Speed on Microstructure and Mechanical Properties of Friction Stir Lap Welded Joints of AA 6061 and Ti6Al4V Alloys

  • Li Zhou
  • Mingrun Yu
  • Zhihua Jiang
  • Fan Guo
  • Hongyun ZhaoEmail author
  • Yongxian HuangEmail author
  • Xiaoguo Song
Article
  • 90 Downloads

Abstract

Three-mm-thick AA 6061 plate and 2-mm-thick Ti6Al4V plate were friction stir lap welded using a W-Re pin tool. Defect-free joints were obtained at various rotation speeds ranging from 800 to 1400 rpm with a constant welding speed of 100 mm/min. The influence of rotation speed on the microstructure and mechanical properties of the Al/Ti friction stir lap welding (FSLW) joints was investigated. At low rotation speed within 1000 rpm, the obtained joint has no obvious mechanical Al/Ti intermixing at the interface. However, a significant mechanical mixture of Al and Ti alloys accompanied by hooks could be found in the joint welded at a rotation speed over 1000 rpm. Only diffusion layer was observed in the joint obtained at low rotation speed. Further, IMCs could be found in the Al/Ti mixture and hook when the rotation speed increased to 1400 rpm. The highest microhardness was measured at the interface due to the formation of IMCs. The tensile shear load of the welded joints reached the maximum at 1000 rpm and the specimens failed along the interface during the test.

Notes

Acknowledgments

We are grateful for the financial support of this research from the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2016EEM43), and the Pre-research Project for General Technology of Weapons and Equipment (Grant No. 41423050101).

References

  1. 1.
    M. Simoncini and A. Forcellese: Mater. Des., 2012, vol. 41, pp. 50–60.CrossRefGoogle Scholar
  2. 2.
    K. Michael, W. Florian, and V. Frank: Opt. Las. Eng., 2005, vol. 43, pp. 1021–35.CrossRefGoogle Scholar
  3. 3.
    S.X. Lv, Q.L. Cui, X.J. Huang, and X.J. Jing: Mater. Sci. Eng. A, 2013, vol. 568, pp. 150–54.CrossRefGoogle Scholar
  4. 4.
    S.H. Chen, L.Q. Li, Y.B. Chen, and D.J. Liu: Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 64–70.CrossRefGoogle Scholar
  5. 5.
    S.Y. Chang, L.C. Tsao, Y.H. Lei, S.M. Mao, and C.H. Huang: J. Mater. Process. Technol., 2012, vol. 212, pp. 8–14.CrossRefGoogle Scholar
  6. 6.
    A.N. Alhazaa and T.I. Khan: J. Alloys Compds., 2010, vol. 494, pp. 351–58.CrossRefGoogle Scholar
  7. 7.
    S.Q. Wang, V.K. Patel, S.D. Bhole, G.D. Wen, and D.L. Chen: Mater. Des., 2015, vol. 78, pp. 33–41.CrossRefGoogle Scholar
  8. 8.
    C.Q. Zhang, J.D. Robson, and P.B. Prangnell: J. Mater. Process. Technol., 2016, vol. 231, pp. 382–88.CrossRefGoogle Scholar
  9. 9.
    M. Aonuma and K. Nakata: Mater. Trans., 2011, vol. 52, pp. 948–52.CrossRefGoogle Scholar
  10. 10.
    A. Wu, Z. Song, K. Nakata, J. Liao, and L. Zhou: Mater. Des., 2015, vol. 71, pp. 85–92.CrossRefGoogle Scholar
  11. 11.
    B. Li, Z. Zhang, Y. Shen, W. Hu, and L. Luo: Mater. Des., 2014, vol. 53, pp. 838–48.CrossRefGoogle Scholar
  12. 12.
    K.S. Bang, K.J. Lee, H.S. Bang, and H.S. Bang: Mater. Trans., 2011, vol. 52, pp. 974–78.CrossRefGoogle Scholar
  13. 13.
    Y.C. Chen and K. Nakata: Mater. Des., 2009, vol. 30, pp. 469–74.CrossRefGoogle Scholar
  14. 14.
    Y.H. Chen, Q. Ni, and L.M. Ke: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 299–304.CrossRefGoogle Scholar
  15. 15.
    B. Li, Y. Shen, L. Luo, W. Hu, and Z. Zhang: Mater. Des., 2013, vol. 49, pp. 647–56.CrossRefGoogle Scholar
  16. 16.
    Z.W. Chen and S. Yazdanian: Mater. Sci. Eng.: A, 2015, vol. 634, pp. 37–45.CrossRefGoogle Scholar
  17. 17.
    R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng.: R: Rep., 2005, vol. 50, pp. 13–58.Google Scholar
  18. 18.
    D.G. Sanders, P. Edwards, A.M. Cantrell, K. Gangwar, and M. Ramulu: JOM, 2015, 67 (5), pp. 1054–62.CrossRefGoogle Scholar
  19. 19.
    R. Pretorius, T.K. Marais, and C.C. Theron: Mater. Sci. Eng. R, 1993, vol. 10 (1–2), pp. 61–83.Google Scholar
  20. 20.
    Q.J. Sun, J.Z. Li, Y.B. Liu, B.P. Li, P.W. Xu, and J.C. Feng: Mater. Des., 2017, vol. 116, pp. 316–24.CrossRefGoogle Scholar
  21. 21.
    ASM International (1990) Binary Alloy Phase Diagrams. ASM International, Novelty, p. 233.Google Scholar
  22. 22.
    L. Cui, X. Yang, G. Zhou, X. Xu, and Z. Shen: Mater. Sci. Eng.: A, 2012, vol. 543, pp. 58–68.CrossRefGoogle Scholar
  23. 23.
    M. Pourali, A. Abodollah-zadeh, T. Saeid, and F. Kargar: J. Alloys Compds., 2017, vol. 715, pp. 1–8.CrossRefGoogle Scholar
  24. 24.
    Q. Zhang, X. Feng, Y. Shen, G. Huang, and P. Zhao: J. Alloys Compds., 2017, vol. 695, pp. 952–61.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinP.R. China
  2. 2.Shandong Provincial Key Laboratory of Special Welding TechnologyHarbin Institute of Technology at WeihaiWeihaiP.R. China

Personalised recommendations