Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 936–946 | Cite as

Modeling of Carbide Spheroidization Mechanism of 52100 Bearing Steel Under Warm Forming Conditions

  • Tao HeEmail author
  • Yuanming Huo
  • Xiaojun Shi
  • Shoushuang Chen
Article
  • 59 Downloads

Abstract

Direct deformation spheroidization of bearing steel can produce a fine and homogeneous microstructure. Warm-compression experiments were performed to investigate the carbide spheroidization behavior of 52100 bearing steel at temperatures of 650 °C to 750 °C and strain rates of 0.1 to 10.0 s−1. A set of mechanism-based unified constitutive equations was developed using the internal state variable method to describe the carbide spheroidization and metal flow behaviors of 52100 steel under warm deformation. The carbide spheroidization fraction, dislocation density, and phase transformation were modeled and correlated with unified constitutive equations. Material parameters in the constitutive equations were determined using genetic algorithm optimization techniques. The developed constitutive equations were validated by comparing the predicted and experimental results. Good consistency between these results indicated that the carbide spheroidization and metal flow behavior could be predicted using these constitutive equations.

Notes

Acknowledgments

This project is funded by the National Natural Science Foundation of China (Grant No. 51805314), Shanghai Committee of Science and Technology (Grant No. 16030501200), and Shanghai University of Engineering and Science (Grant Nos. E3-0903-17-01006 & E3-0501-18-01002). The Robot Functional Materials Preparation Laboratory in Shanghai University of Engineering Science is also gratefully acknowledged. We thank Kathryn Sole, Ph.D., from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

References

  1. 1.
    Guohui Zhu and Gang Zheng: Frontiers of Materials Science in China, 2008, vol. 2, pp. 72-75.CrossRefGoogle Scholar
  2. 2.
    Yunhong Jiang and Jing Zhou: Heat Treatment, 2009, vol. 24, pp. 11-16.Google Scholar
  3. 3.
    Meng X., Chen Q.: Journal of Anhui University of Technology(Natural Science), 2013) vol. 30, pp. 119-123.Google Scholar
  4. 4.
    W. K. Yan, M. S. Yang, J. H. Du and F. Yu: Iron & Steel, 2010, vol. 45, pp. 63-67.Google Scholar
  5. 5.
    Sun Mingyi, Du Zhenmin, Zheng Xiufang, Qin Wenming and Guo Juncheng: Metal Products, 2013, vol. 39, pp. 22-27.Google Scholar
  6. 6.
    Wang Donghong, Yang Xiao, Zhu Guohui and Chen Qiwei: Journal of Anhui University of Technology, 2009, vol. 26, pp.239-242.Google Scholar
  7. 7.
    Ye Huili, Li Guozhong, Hui Rong, Deng Fengyun and Jiang Jianqing: Metal Hotworking Technology, 2007, vol. 36, pp.30-31.Google Scholar
  8. 8.
    Lei Mao, Jingrong Liu and Yinzhi Cao: Journal of Northeast University of Technology, 1993, vol. 14, pp. 193-197.Google Scholar
  9. 9.
    Qiwei Chen, Guohui Zhu, Shumin Cao and Aimin Zhao: Advanced Materials Research, 2011, vol. 295-297, pp. 515-519.CrossRefGoogle Scholar
  10. 10.
    Zhengsheng Li, Yuexiang Xia, Dixian Xue, Yi Peng and Shaowen Wang: Iron and Steel, 1995, vol. 31, pp. 35-38.Google Scholar
  11. 11.
    Dalin Sun, Jingrong Liu, Lei Mao, Jun Ci, Shuqin Pan, Youshan Li and Guangcheng Bai: Iron and Steel, 1994, vol. 29, pp. 48-51.Google Scholar
  12. 12.
    L Storojeva, D Ponge, R Kaspar and D Raabe: Acta Mater., 2004, vol. 52, pp. 2209-2220.CrossRefGoogle Scholar
  13. 13.
    Longfei Li, Wangyue Yang and Zuqing Sun: Metallurgical and Materials Transactions A, 2008, vol. 39, pp. 624-635.CrossRefGoogle Scholar
  14. 14.
    Ø. Grong and H. Shercliff: Prog. Mater Sci., 2002, vol. 47, pp. 163-282.CrossRefGoogle Scholar
  15. 15.
    J. Lin, Y. Liu, D. C. J. Farrugia and M. Zhou: Philosophical Magazine, 2005, vol. 85, pp. 1967-1987.CrossRefGoogle Scholar
  16. 16.
    Jianguo Lin, Y. Liu and T.A. Dean: International Journal of Damage Mechanics, 2005, vol. 14, 299-319.CrossRefGoogle Scholar
  17. 17.
    Yuanming Huo, Qian Bai, Baoyu Wang, Jianguo Lin and Jing Zhou: J. Mater. Process. Technol., 2015, vol. 223, pp. 274-283.CrossRefGoogle Scholar
  18. 18.
    Q Bai, J Lin, TA Dean, DS Balint, T Gao and Z Zhang: Mater. Sci. & Eng. A, 2013, vol. 559, pp. 352-358.CrossRefGoogle Scholar
  19. 19.
    Yuanming Huo, Tao He, Shoushuang Chen and Riming Wu: JOM, 2018, vol. 70, pp. 1112-1117.CrossRefGoogle Scholar
  20. 20.
    Kai Miao, Yanlin He, Naqiong Zhu, Jingjing Wang, Xiaogang Lu and Lin Li: Journal of Alloys & Compounds, 2015, vol. 622, pp. 513-523.CrossRefGoogle Scholar
  21. 21.
    X. Yang, H. Xu, Y. Wang, and J. Ma: IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 207, art. no. 012051,  https://doi.org/10.1088/1757-899X/207/1/012051.
  22. 22.
    Ze Chai and Ba Fahai: Materials for Mechanical Engineering, 2015, vol. 39, pp. 42-45.Google Scholar
  23. 23.
    Bai, Q., Lin, J., Dean, T. A., Balint, D. S., Gao, T., & Zhang, Z: Materials Science and Engineering A, 2013, vol. 559, pp.352-358.CrossRefGoogle Scholar
  24. 24.
    Lin J, Ho K C, Dean T A: International Journal of Machine Tools & Manufacture, 2006, vol. 46, pp.1266-1270.CrossRefGoogle Scholar
  25. 25.
    H. Dehghan, S. M. Abbasi, A. Momeni and A. Karimi Taheri: Journal of Alloys & Compounds, 2013, vol. 564, pp. 13-19.CrossRefGoogle Scholar
  26. 26.
    Manel Campillo, M. Teresa Baile, Sergi Menargues, Enric MartãN and Antonio Forn: Solid State Phenomena, 2012, vol. 192-193, pp. 454-459.CrossRefGoogle Scholar
  27. 27.
    Guan Jianhui, Chen Qiwei and Zhu Guohui: Journal of Anhui University of Technology(Natural Science), 2012, vol. 29, pp. 125-128.Google Scholar
  28. 28.
    Y Estrin: J. Mater. Process. Technol., 1998, vol. 80, pp. 33-39.CrossRefGoogle Scholar
  29. 29.
    Martin Becker and Hans Peter Hackenberg: International Journal of Plasticity, 2011, vol. 27, pp. 596-619.CrossRefGoogle Scholar
  30. 30.
    J. Lin, Y. Liu, D. C. J. Farrugia and M. Zhou: Philosophical Magazine, 2005, vol. 85, pp. 1967-1987.CrossRefGoogle Scholar
  31. 31.
    Y. P. Lin, J. Lin, T. A. Dean and P. D. Brown: American Institute of Physics, 2007, vol.907, pp.1199-1204.Google Scholar
  32. 32.
    Hongchao Ji, Jinping Liu, Baoyu Wang, Xuefeng Tang, Jianguo Lin and Yuanming Huo: Journal of Alloys & Compounds, 2017, vol. 693, pp. 674-687.CrossRefGoogle Scholar
  33. 33.
    Bo Li, Qinglin Pan and Zhimin Yin: Journal of Alloys & Compounds, 2014, vol. 584, pp. 406-416.CrossRefGoogle Scholar
  34. 34.
    J. Cao and J. Lin: International Journal of Mechanical Sciences, 2008, vol. 50, pp. 193-204.CrossRefGoogle Scholar
  35. 35.
    J. Lin, B. H Cheong and X. Yao: Journal of Materials Processing Tech, 2002, vol. 125, pp. 199-205.CrossRefGoogle Scholar
  36. 36.
    Lin J, Cheong B H, Yao X: Journal of Materials Processing Tech, 2002, vol. 125, pp.199-205.CrossRefGoogle Scholar
  37. 37.
    Lei Yang, Baoyu Wang, Gang Liu, Huijun Zhao and Wenchao Xiao: Materials & Design, 2015, vol. 85, pp. 135-148.CrossRefGoogle Scholar
  38. 38.
    Nan Li, Chaoyang Sun, Ning Guo, Mohamed Momhamed, Jianguo Lin and M. Takeki: Procedia Engineering, 2014, vol. 81, pp. 1744-1749.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Tao He
    • 1
    Email author
  • Yuanming Huo
    • 1
  • Xiaojun Shi
    • 2
  • Shoushuang Chen
    • 3
  1. 1.School of Mechanical and Automotive EngineeringShanghai University of Engineering ScienceShanghaiChina
  2. 2.Fangta Traditional Chinese Medicine Hospital of Songjiang DistrictShanghaiChina
  3. 3.Institute of Quantitative & Technical EconomicsChinese Academy of Social SciencesBeijingChina

Personalised recommendations