Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 924–935 | Cite as

Density of Liquid Ni-Ti and a New Optical Method for its Determination

  • J. BrilloEmail author
  • T. Schumacher
  • K. Kajikawa
Article
  • 77 Downloads

Abstract

Liquid Ni-Ti alloys were processed in a containerless way using the technique of electromagnetic levitation in order to determine their densities. An improved optical method was utilized where, in addition to recording shadowgraph images from the side, a second camera recorded images of the sample from the top. A correction factor for the density was calculated from the top-view images. This method yields measurements insensitive to droplet rotation and static deformation which removes the need to assume axial symmetry. The measured densities are discussed in terms of the molar volume. A negative molar excess volume was obtained, indicating that Ni-Ti is a highly non-ideal system. These measurements were then used to test a recently proposed relationship between the molar excess volume, the excess free energy, and the isothermal compressibility. For the first time, the excess volume of a binary alloy, i.e., Ni-Ti, is adequately predicted by a thermodynamic model.

List of Symbols

ρ

Mass density (g cm−3)

Δρ

Uncertainty of the density (g cm−3)

ρNi

Mass density of liquid Ni (g cm−3)

ρTi

Mass density of liquid Ti (g cm−3)

ρL

Mass density at liquidus (g cm−3)

ρT

Temperature coefficient of mass density (g cm−3K−1)

ρT,Ni

Temperature coefficient of the mass density of liquid Ni (g cm−3K−1)

ρT,Ti

Temperature coefficient of the mass density of liquid Ti (g cm−3K−1)

T

Temperature [K (°C)]

TL

Liquidus temperature [K (°C)]

TP

Pyrometer signal [K(°C)]

TL,P

Pyrometer signal at liquidus temperature [K(°C)]

EG

Excess free energy (kJmol−1)

P

Pressure (Pa)

κT

Isothermal compressibility coefficient (Pa−1)

κe

Effective isothermal compressibility coefficient (Pa−1)

κT,Ni

Isothermal compressibility coefficient of liquid Ni (Pa−1)

κT,Ti

Isothermal compressibility coefficient of liquid Ti (Pa−1)

κe,0

1st linear coefficient for the dependence of κe on EG (Pa−1)

κe,1

2nd linear coefficient for the dependence of κe on EG (Pa−1)

Rm

Molar gas constant (8.314 kJmol−1)

uS

Ultrasonic sound velocity (m s−1)

cP

Isobaric-specific heat (Jg−1K−1)

R

Radius of an edge point in the side-view image represented in polar coordinates (pixel)

Rtop

Radius of an edge point in the top-view image represented in polar coordinates (pixel)

φ

Azimuthal angle of an edge point in the side-view image represented in polar coordinates

ϕ

Polar angle of an edge point in the top-view image represented in polar coordinates

Xtop

Cartesian edge-point “x”-component in the top-view image (pixel)

Ytop

Cartesian edge-point “y”-component in the top-view image (pixel)

\( X_{\hbox{max} }^{\text{top}} \)

Maximum value of Xtop (pixel)

\( Y_{\hbox{max} }^{\text{top}} \)

Maximum value of Ytop (pixel)

ai,X

ith expansion coefficient of Xtop (pixel)

ai,Y

ith expansion coefficient of Ytop (pixel)

bi,X

ith expansion coefficient of Xtop (pixel)

bi,Y

ith expansion coefficient of Ytop (pixel)

Πi

Legendre polynomial of the order i

ai

Coefficient associated with Πi

VP,Circle

Volume of a sample with an assumed circular cross section (pixel3)

VP,real

Real volume of a sample (pixel3)

ΔVP,real

Uncertainty of the real volume (pixel3)

SV

Calibrated volume of a sample (cm3)

SM

Mass of a sample (g)

M

Molar mass (gmol−1)

MNi

Molar mass of Ni (gmol−1)

MTi

Molar mass of Ti (gmol−1)

QCircle

Area of the circular cross section (pixel2)

h

Position (height) on the vertical axis of the droplet (pixel)

Qreal

Area of the real cross section (pixel2)

aasy

Asymmetry coefficient

a

Half axis of an elliptic sample cross section (pixel)

b

Other half axis of an elliptic sample cross section (pixel)

q

Scaling factor for calibration (cm3 pixel−3)

V

Molar volume (cm3 mol−1)

EV

Excess molar volume (cm3 mol−1)

idV

Molar volume of an ideal solution (cm3 mol−1)

VTi

Molar volume of Ti (cm3 mol−1)

VNi

Molar volume of Ni (cm3 mol−1)

0V

Volume interaction constant (cm3 mol−1)

0A

Coefficient for the temperature dependence of 0V (cm3 mol−1)

0B

Coefficient (slope) for the temperature dependence of 0V (cm3 mol−1K−1)

xTi

Mole fraction of Ti (at. pct)

xNi

Mole fraction of Ni (at. pct)

Notes

Acknowledgment

Many thanks to Dr. F. Yang, Dr. A Rawson, and Priv.-Doz. Dr. D. Holland-Moritz for their critical reviews of the manuscript.

References

  1. 1.
    E. Akca, A. Gursel, Periodicals of Eng, and Nat. Sci. 2015, vol. 3, pp. 15-27Google Scholar
  2. 2.
    M.T. Jovanovic, B. Lukic, Z. Miskovic, I. Bobic, I. Cvijovic, B. Dimcic, Metalurgija – Journal of Metallurgy 2007, vol. 13, pp. 91-106Google Scholar
  3. 3.
    E.I. Galindo-Nava, W.M. Rainforth, P.E.J. Rivera-Díaz-del-Castillo, Acta Mater. 2016, vol. 117, pp. 270-285.CrossRefGoogle Scholar
  4. 4.
    G.S. Firstov, J.V. Humbeeck, Y.N. Koval, Mater. Sci. Eng. 2004, vol. A 378, pp. 2–10.Google Scholar
  5. 5.
    K. Otsuka, X. Ren, Prog. Mater. Sci. 2005, vol. 50, pp. 511-678.CrossRefGoogle Scholar
  6. 6.
    X. Yi, K. Sun, W. Gao, X. Meng, W. Cai, L. Zhao, Journal of Alloys and Compounds 2018, vol. 735, pp. 1219-1226.CrossRefGoogle Scholar
  7. 7.
    J. Brillo, G. Lohöfer, F. Schmidt-Hohagen, S. Schneider, I. Egry, J. of Mat. Prod. Tech. 2006, vol. 16, pp. 247-273CrossRefGoogle Scholar
  8. 8.
    R.A. Harding, R.F. Brooks, G. Pottlacher, J. Brillo: Thermophysical Properties of a Ti-44-Al-8Nb-1B alloy in the solid and molten conditions, Gamma Titanium Aluminides 2003, TMS (The Minerals, Metals & Materials Society), 75, 2003.Google Scholar
  9. 9.
    J. Brillo, S. Schneider, I. Egry, and R. Harding: Density, Thermal Expansion and Surface Tension of Liquid Titanium Alloys Measured by Non-contact Techniques, Proceedings of the 10th Titanium World Conference, Hamburg 2003, H. Lütjering, Hrsg., Wiley-VCh, 411, 2003Google Scholar
  10. 10.
    S. Amore, S. Delsante, H. Kobatake, J. Brillo, J. Chem. Phys. 2013, vol. 139, pp. 064504-1.CrossRefGoogle Scholar
  11. 11.
    S. Amore, J. Brillo, I. Egry, R. Novakovic, App. Surf. Sci. 2011, vol. 257, pp. 7739-7745CrossRefGoogle Scholar
  12. 12.
    J.J. Wessing, and J. Brillo: Metall. Mater. Trans., 2017, vol. A 48, pp. 868–82Google Scholar
  13. 13.
    I. Egry, R. Brooks, D. Holland-Moritz, R. Novakovic, T. Matsushita, E. Ricci, S. Seetharaman, R. Wunderlich, D. Jarvis, Int. J. Thermophys. 2007, vol. 28, pp. 1026-1036CrossRefGoogle Scholar
  14. 14.
    S. Ozawa, K. Morohoshi, T. Hibiya, ISIJ International 2014, vol. 54, pp. 2097-2103CrossRefGoogle Scholar
  15. 15.
    P.F. Paradis, T. Ishikawa, G.W. Lee, D. Holland-Moritz, J. Brillo, W.K. Rhim, J. Okada, Materials Science and Engineering R: Reports 2014, vol. R76, pp. 1-53.CrossRefGoogle Scholar
  16. 16.
    G. Pottlacher: High Temperature Thermophysical Properties of 22 Pure Metals, edition keiper, Graz, Austria, 2010.Google Scholar
  17. 17.
    K.C. Mills: Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing Ltd., Cambridge, UK, 2002.CrossRefGoogle Scholar
  18. 18.
    J. Brillo: Thermophysical properties of multicomponent liquid alloys, de Gruyter, Berlin, Germany, 2016.CrossRefGoogle Scholar
  19. 19.
    P.F. Zhou, H.P. Wang, S.J. Wang, L. Hu, B. Wei, Metallurgical and Materials Transactions 2018, vol. 49A, pp. 5488-5496CrossRefGoogle Scholar
  20. 20.
    H.L. Peng, T. Voigtmann, G. Kolland, H. Kobatake, J. Brillo: Phys. Rev. 2015, vol. B 97, pp. 184201-1–184201-13Google Scholar
  21. 21.
    S. Amore, J. Horbach, I. Egry, J. Chem. Phys. 2011, vol. 134, pp. 044515-1 - 044515-9CrossRefGoogle Scholar
  22. 22.
    Y. Plevachuk, J. Brillo, and A. Yakymovych: Metall. Mater. Trans. 2018, vol. A, in pressGoogle Scholar
  23. 23.
    M. Watanabe, M. Adachi, H. Fukuyama, J. Mater. Sci. 2016, vol. 51, pp. 3303-3310CrossRefGoogle Scholar
  24. 24.
    M. Adachi, T. Aoyagi, A. Mizuno, M. Watanabe, H. Kobatake, H. Fukuyama, Int. J. Thermophys. 2008, vol. 29, pp. 2006-2014CrossRefGoogle Scholar
  25. 25.
    J. Brillo, I. Egry, I. Ho, Int. J. Thermophys. 2006, vol. 27, pp. 494-506CrossRefGoogle Scholar
  26. 26.
    S. Krishnan, G.P. Hansen, R.H. Hauge, J.L. Margrave, High Temp. Sci. 1990, vol. 29, pp. 17-52Google Scholar
  27. 27.
    T.B. Massalski: Binary Alloy Phase Diagram, American Society for Metals, Ohio, USA, 1986.Google Scholar
  28. 28.
    J. Brillo, I. Egry, Int. J. Thermophys. 2003, vol. 24, pp. 1155-1170CrossRefGoogle Scholar
  29. 29.
    F. Kargl, C. Yuan, and G.N. Greaves, Int. J. Microgravity Sci. Appl. 2015, vol. 32, pp. 320212-1 - 320212-5Google Scholar
  30. 30.
    H. Kobatake, J. Brillo, J. Mater. Sci. 2013, vol. 48, pp. 4934-4941CrossRefGoogle Scholar
  31. 31.
    J. Brillo, I. Egry, Z. Metallkd. 2004, vol. 95, pp. 691-697CrossRefGoogle Scholar
  32. 32.
    J. Brillo, I. Egry, J. Westphal, Int. J. Mat. Res. 2008, vol. 99, pp. 162-167CrossRefGoogle Scholar
  33. 33.
    J. Brillo, I. Egry, T. Matsushita, Int. J. Mat. Res. 2006, vol. 97, pp. 1526-1532CrossRefGoogle Scholar
  34. 34.
    Y. Plevachuk, I. Egry, J. Brillo, D. Holland-Moritz, I. Kaban, Int. J. Mat. Res. 2007, vol. 98, pp. 107-111CrossRefGoogle Scholar
  35. 35.
    W. Tang, B. Sundman, R. Sandstroem, C. Qiu, Acta Mater 1999, vol. 47, pp. 3457-3468CrossRefGoogle Scholar
  36. 36.
    Y. Kawai, Y. Shiraishi: Handbook of Physico-chemical Properties at High Temperatures, The Iron and Steel Institute of Japan ISIJ, Osaka, Japan, 1988.Google Scholar
  37. 37.
    J.B. Walter, K.L. Telschow, and R.E. Haun: https://www.osti.gov/servlets/purl/9233, 1999, Accessed 27 March 2018

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Institut für Materialphysik im WeltraumDeutsches Zentrum für Luft- und Raumfahrt (DLR)CologneGermany
  2. 2.The Japan Steel Works Ltd.Muroran-shiJapan

Personalised recommendations