Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 719–732 | Cite as

Simulation of the Precipitation Kinetics of Maraging Stainless Steels 17-4 and 13-8+Mo During Multi-pass Welding

  • Robert J. HamlinEmail author
  • John N. DuPont
  • Charles V. Robino


Recent work has shown that the strength of fusion welds in alloys 17-4 and 13-8+Mo can be restored by re-precipitation that occurs during subsequent thermal cycles associated with multi-pass welding. The purpose of the current investigation is to develop a more detailed understanding of the precipitation kinetics of these materials during times and temperatures representative of welding thermal cycles. Peak aged samples of each alloy were subjected to a series of short isothermal holds at high temperatures using a Gleeble thermomechanical simulator. Hardness measurements were then recorded to estimate the precipitate dissolution. Additional secondary heating experiments were performed and hardness measurements were recorded to estimate the extent of precipitate growth. The hardness data were then used in combination with the Avrami equation and strengthening considerations to develop a relationship between hardness and fraction transformed of the strengthening precipitates. Light optical microscopy and X-ray diffraction were performed on all samples to determine the evolution of the matrix microstructures. The matrix microstructure had minimal effect on the hardness, while the strengthening precipitates were the primary factor affecting the hardness. Apparent activation energies for precipitation, determined through conventional Arrhenius rate analysis at constant fraction transformed, were calculated as 175 and 132 kJ/mol for 17-4 and 13-8+Mo, respectively. Global fitting of the data, based on a simplifying assumption for the temperature dependence of the Avrami rate constant, was also performed in order to improve the practical utility of the analysis, and provided good correlations between estimated and measured hardness over the full range of times and temperatures. Although additional microstructural characterization is needed to understand the significance of these relationships, the kinetic parameters determined from global fitting are useful for practical estimation of strength restoration procedures in multi-pass fusion welds.



The authors gratefully acknowledge financial support for this work from the AMC Casting Solutions for Readiness program that is sponsored by the Defense Supply Center, Philadelphia, PA and the Defense Logistics Agency Research & Development (R&D) Office, Ft. Belvoir, VA.


  1. 1.
    A.K. Bhaduri, S. Sujith, G. Srinivasan, T.P.S. Gill, and S.L. Mannan: Weld. J. (Miami), 1995, vol. 74, pp. 153-59.Google Scholar
  2. 2.
    J.A. Brooks and W.M. Garrison Jr.: Weld J. (Miami), 1999, vol. 78, pp. 280-91.Google Scholar
  3. 3.
    R.J. Hamlin and J.N. DuPont: Metall. Mater. Trans. A, 2017, vol. 48, pp. 246-64.CrossRefGoogle Scholar
  4. 4.
    A.K. Bhaduri and S. Venkadesan: Steel Res. 1989, vol. 60, pp. 509-13.CrossRefGoogle Scholar
  5. 5.
    R.J. Hamlin and J.N. DuPont: Weld J. (Miami), 2018, vol. 97, pp. 253-62.CrossRefGoogle Scholar
  6. 6.
    M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-12.CrossRefGoogle Scholar
  7. 7.
    M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212-124.CrossRefGoogle Scholar
  8. 8.
    M. Avrami: J. Chem. Phys., 1941, vol. 9, pp. 177-84.CrossRefGoogle Scholar
  9. 9.
    J.W. Christian: Theory of Transformations in Metals and Alloys, Pergamon Press, New Oxford, 2002, pp. 529-552.CrossRefGoogle Scholar
  10. 10.
    C.V. Robino, M.J. Cieslak, P.W. Hochanadel, and G.R. Edwards: Metall. Mater. Trans. A, 1993, vol. 25, pp. 697-704.Google Scholar
  11. 11.
    J.W. Christian: Theory of Transformations in Metals and Alloys, Pergamon Press, New Oxford, UK, 2002, pp. 718-796.CrossRefGoogle Scholar
  12. 12.
    V. Gerold and H. Haberkorn: Phys. Status Solidi, 1966, vol. 16, pp. 675-84.CrossRefGoogle Scholar
  13. 13.
    D. Tabor: The Hardness of Metals, Oxford University Press, New York, NY, 1951, pp. 67-76.Google Scholar
  14. 14.
    H. Mirzadeh and A. Najafizadeh: Mater. Chem. Phys., 2009, vol. 116, pp. 119-24.CrossRefGoogle Scholar
  15. 15.
    P.W. Hochanadel, G.R. Edwards, C.V. Robino, and M.J. Cieslak: Metall. Mater. Trans. A, 1994, vol. 25, pp. 789-98.CrossRefGoogle Scholar
  16. 16.
    U.K. Viswanathan, S. Banerjee, and R. Krishnan: Mater. Sci. Eng. A., 1988, vol. 104, pp. 181-89.CrossRefGoogle Scholar
  17. 17.
    H. Bhadeshia and R. Honeycombe: Steels: Microstructure and Properties, 3rd Ed., Butterworth-Heinemann, Oxford, U.K, 2011, pp. 209-34.Google Scholar
  18. 18.
    Z. Guo and W. Sha: Mater. Trans., 2002, vol. 43, pp. 1273-82.CrossRefGoogle Scholar
  19. 19.
    T. Gladman: Mater. Sci. Technol., 1999, vol. 15, pp. 30-36.CrossRefGoogle Scholar
  20. 20.
    A.S. Murthy, J.E. Medvedeva, D. Isheim, S.L. Lekakh, V.L. Richards, and D.C. Van Aken: Scripta Mater., 2012, vol. 66, 943-46.CrossRefGoogle Scholar
  21. 21.
    D.H. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya, and K. Hono: Mater. Sci. Eng. A., 2005, vol. 394, pp. 285-95.CrossRefGoogle Scholar
  22. 22.
    J.T. Bono, J.N. DuPont, D. Jain, S.-I. Baik, and D.N. Seidman: Metall. Mater. Trans. A., 2015, vol. 46, pp. 5158-5170.CrossRefGoogle Scholar
  23. 23.
    J. Wang, H. Zou, C. Li, S. Qiu, B. Shen: Mater. Charact., 2006, vol. 57, pp. 274-280.CrossRefGoogle Scholar
  24. 24.
    S. Floreen: Metall. Rev., 1968, vol. 13, pp. 115-28.Google Scholar
  25. 25.
    D.R. Squires and E.A. Wilson: Metall. Mater. Trans. A., 1984, vol. 15, 1947-48.CrossRefGoogle Scholar
  26. 26.
    U.K. Viswanathan, P.K.K. Nayar, and R. Krishnan: Mater. Sci. Technol., 1989, vol. 5, pp. 346-349.CrossRefGoogle Scholar
  27. 27.
    S. Floreen and R.F. Decker: Trans. ASM, 1962, vol. 55, pp. 518.Google Scholar
  28. 28.
    V.K. Vasudevan, S.J. Kim, and C.M. Wayman: Metall. Trans. A., 1990, vol. 21, pp. 2655-68.CrossRefGoogle Scholar
  29. 29.
    B. Rivolta and R. Gerosa: J. Therm. Anal. Calorim., 2010, vol. 102, pp. 857-62.CrossRefGoogle Scholar
  30. 30.
    R. Schnitzer, R. Radis, M. Nöhrer, M. Schober, R. Hochfellner, S. Zinner, E. Povoden-Karadeniz, E. kozeschnik, and H. Leitner: Mater. Chem. Phys., 2010, vol. 122, pp. 138-45.CrossRefGoogle Scholar
  31. 31.
    J.-H. Wu and C.-K. Lin: J. Mater. Sci., 2003, vol. 38, pp. 965-71.CrossRefGoogle Scholar
  32. 32.
    P.P. Sinha, D. Sivakumar, N.S. Babu, K.T. Tharian, and A. Natarajan: Steel Res., 1995, vol. 66, pp. 490-94.CrossRefGoogle Scholar
  33. 33.
    H. Nakagawa, T. Miyazaki, and H. Yokota: J. Mater. Sci., 2000, vol. 35, pp. 2245-53.CrossRefGoogle Scholar
  34. 34.
    R.E. Miner, J.K. Jackson, and D.F. Gibbons: Aime Met. Soc. Trans., 1966, vol. 236, pp. 1565-1570.Google Scholar
  35. 35.
    G.R. Speich, D.S. Dabkowski, and L.F. Porter: Metall. Trans., 1973, vol. 4, pp. 303-15.CrossRefGoogle Scholar
  36. 36.
    M.B. Berkenpas, J.A. Barnard, R.V. Ramanujan, and H.I. Aaronson: Scripta Metall., 1986, vol. 20, pp. 323-28.CrossRefGoogle Scholar
  37. 37.
    M.J. Starink: J. Mater. Sci., 1997, vol. 32, pp. 6505-12.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Robert J. Hamlin
    • 1
    Email author
  • John N. DuPont
    • 1
  • Charles V. Robino
    • 2
  1. 1.Lehigh UniversityBethlehemUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations