Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 915–923 | Cite as

Precipitation of η-Ni3(Ti, Al) Phase at Grain Boundaries in an Austenitic Precipitation-Strengthened Stainless Steel

  • Hui LiEmail author
  • Hui Song
  • Wenqing Liu


The precipitation of the η-Ni3(Ti, Al) phase at grain boundaries in austenitic stainless steels significantly affects grain-boundary-related properties of the bulk material. In this study, the precipitation behavior of the η-Ni3(Ti, Al) phase in a thermally aged austenitic precipitation-strengthened stainless steel was evaluated during aging at 750 °C for 0.5 to 64 hours using scanning electron microscopy, transmission electron microscopy, and atom probe tomography. A higher number of plate-like η-Ni3(Ti, Al) phase particles precipitated at the grain boundaries with increasing aging time, and grew into the grain interior until the entire grain was occupied by this phase. The η phase had a {0001}η//{111}γ, \( \langle 11\bar{2}0\rangle_{{{\upeta }}} \)//〈110〉γ semi-coherent orientation relationship with the matrix, and contained many stacking faults. Ni- and Ti-rich layers alternated periodically between adjacent stacking faults in the η phase. Al segregated at stacking faults and the interface between the η phase and matrix. The partition coefficients of Ni, Al, and Si between the η precipitates and matrix decreased with increased aging time; however, the partition coefficient of Ti did not change significantly. The partition coefficients of the other elements increased with increasing aging time. The Ti:Al ratio of the η phase significantly increased with increasing aging time. Based on the experimental results, the precipitation and growth behaviors of η-Ni3(Ti, Al) phase precipitated at grain boundaries were discussed, which are expected to contribute to the design of austenitic stainless steel compositions with improved mechanical properties.



This work was supported by National Key Research Project and Development Program of China (No. 2016YFB0700401), Natural Science Foundation of China (No.51301103), and Special Fund for Instrument and Chemistry from Science and Technology Commission of Shanghai (No. 17142203100).


  1. 1.
    S.Q. Zhao, X.S. Xie, G.D. Smith, S.J. Patel: Mater. Sci. Eng., 2003, vol. 355A, pp. 96-105.CrossRefGoogle Scholar
  2. 2.
    J.P. Shingledecker, G.M. Pharr: Metall. Mater. Trans., 2012, vol. A43, pp. 1902-10.CrossRefGoogle Scholar
  3. 3.
    Z.H. Zhong, Y.F. Gu, Y. Yuan: Mater. Sci. Eng., 2015, vol. A622, pp. 101–7.CrossRefGoogle Scholar
  4. 4.
    C.S. Wang, Y.A. Guo, J.T. Guo, L.Z. Zhou: Mater. Sci. Eng., 2015, vol. A639, pp. 380–8.CrossRefGoogle Scholar
  5. 5.
    C.S. Wang, Y.A. Guo, J.T. Guo, L.Z. Zhou: Mater. Des., 2015, vol. 88, pp. 790–8.CrossRefGoogle Scholar
  6. 6.
    T.T. Wang, C.S. Wang, W. Sun, X.Z. Qin, J.T. Guo, L.Z. Zhou: Mater. Des., 2014, vol. 62, pp. 225–32.CrossRefGoogle Scholar
  7. 7.
    Y.L. Xu, L. Zhang, J. Li, X.S. Xiao, X.L. Cao, G.Q. Jia, Z. Shen: Mater. Sci. Eng., 2012, vol. 544A, pp. 48-53.CrossRefGoogle Scholar
  8. 8.
    X.Z. Qin, J.T. Guo, C.Yuan, J.S. Hou, L.Z. Zhou, H.Q. Ye: Mater. Sci. Eng., 2012, vol. 543A, pp. 121-8.CrossRefGoogle Scholar
  9. 9.
    J.A. Brooks, A.W. Thompson: Metall. Mater. Trans., 1993, vol. A24, pp. 1983-91.CrossRefGoogle Scholar
  10. 10.
    H.D. Cicoo, M.I. Luppo, L.M. Gribaudo, J. Ovejero-Garcia: Mater. Character., 2004, vol. 52, pp. 85-92.CrossRefGoogle Scholar
  11. 11.
    T.M. Smith, B.D. Esser, N. Antolin, G.B. Viswanathan, T. Hanlon, A. Wessman, D. Mourer, W. Windl, D.W. McComb, M.J. Mills: Acta Mater., 2015, vol. 100, pp. 19-31.CrossRefGoogle Scholar
  12. 12.
    Y.U. Heo, M. Takeguchi, K. Furuya, H.C. Lee: Acta Mater., 2009, vol. 57, pp. 1176-87.CrossRefGoogle Scholar
  13. 13.
    M. Detrois, R.C. Helmink, S. Tin: Metall. Mater. Trans., 2014, vol. A45, pp. 5332-43.CrossRefGoogle Scholar
  14. 14.
    H. Leitner, M. Schober, R. Schnitzer: Acta Mater., 2010, vol. 58, pp. 1261-9.CrossRefGoogle Scholar
  15. 15.
    S. Asgari, R. Sharghi-Moshtaghin, M. SadeghAhmadi, P. Pirouz: Phil. Mag., 2013, vol. 93, pp. 1351-70.CrossRefGoogle Scholar
  16. 16.
    X.Y. Li, J. Zhang, L.J. Rong, Y.Y. Li: Chin. J. Mater. Res., 2006, vol. 20(2), pp. 113-9.Google Scholar
  17. 17.
    O.M. Messe, J.S. Barnard, E.J. Pickering, P.A. Midley, C.M.F. Rae: Phil. Mag., 2014, vol. 94, pp. 1132-52.CrossRefGoogle Scholar
  18. 18.
    J.C. Zhao, V. Ravikumar, A.M. Beltran: Metall. Mater. Trans., 2001, vol. 32A, pp. 1271-82.CrossRefGoogle Scholar
  19. 19.
    S. Antonov, M. Detrois, R.C. Helmink, S. Tin: J. Alloy Comp., 2015, vol. 626, pp. 76-86.CrossRefGoogle Scholar
  20. 20.
    M.K. Miller, Atom probe tomography: analysis at the atomic level, 1st ed., Kluwer Academic / Plenum Publisher, New York, 1999, p.33.Google Scholar
  21. 21.
    J.M. Cairney, D.W. Saxey, D. McGrouther, S.P. Ringer: Phy. B, 2007, vol. 394, pp. 267-269.CrossRefGoogle Scholar
  22. 22.
    H. Li, H. Song, W.Q. Liu, S. Xia, B.X. Zhou, C. Su, W.Y. Ding: Ultramicroscopy, 2015, vol. 159, pp. 255–264.CrossRefGoogle Scholar
  23. 23.
    M. Schober, R. Schnitzer, H. Leitner: Ultramicroscopy, 2009, vol. 109, pp. 553–62.CrossRefGoogle Scholar
  24. 24.
    M.J. Wong, P.G. Sanders, J.P. Shingledecker, C.L. White: Metall. Mater. Trans., 2015, vol. 46A, pp. 2947-55.CrossRefGoogle Scholar
  25. 25.
    K. Hagihara, T. Nakano, Y. Umakoshi: Acta Mater., 2003, vol. 51, pp. 2623-37.CrossRefGoogle Scholar
  26. 26.
    N.D. Evans, P.J. Maziasz, R.W. Swindeman, G.D. Smith:, Scr. Mater., 2004, vol. 51, pp. 503–7.CrossRefGoogle Scholar
  27. 27.
    F. Long, Y.S. Yoo, C.Y. Jo, S.M. Seo, Y.S. Song, T. Jin, Z.Q. Hu: Mater. Sci. Eng., 2009, vol. 527A, pp. 361–9.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Key Laboratory for Microstructures, School of Materials Science and EngineeringShanghai UniversityShanghaiP.R. China
  2. 2.College of Materials Science and EngineeringChongqing UniversityChongqingP.R. China

Personalised recommendations