Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 1061–1075 | Cite as

Microstructural and Mechanical Properties Examination of High-Power Diode Laser-Treated R260 Grade Rail Steels Under Different Processing Temperatures

  • Ozan YaziciEmail author
  • Suat Yilmaz
  • Selim Yildirim


In the present study, high-power diode laser surface treatment was implemented to R260 grade steel with three different processing temperatures (1100 °C, 1200 °C, and 1300 °C) at the laser power of 1750 W and scanning speed of 6 mm/s, in order to identify the effect of various processing temperatures on the mechanical performance. According to the test results, the laser-treated sample at 1300 °C showed much better mechanical performance among the other laser-treated samples. It was found that the laser-treated sample at 1300 °C had about 3 times more surface hardness, a 43 pct increase in yield strength, and a 53 pct increase in toughness value compared to the untreated sample. Microstructural investigations showed that this surface treatment did not only generate a martensitic structure with a certain depth but also provided the formation of a fine pearlitic structure contributing to an increase in the mechanical properties. As a conclusion, it was found that the processing temperature is one of the critical factors affecting the mechanical properties in the laser hardening process. Moreover, the results demonstrated that this treatment method might be an alternative method to enhance the mechanical properties of existing rail steels online without the need for rail disassembly, reducing operational costs.



This study was supported by the Research Fund of Istanbul University (Project No. 49081). The authors thank Professor Dr. Murat Baydogan, Associate Professor Derya Dispinar, Research Assistant Faiz Muhaffel, Cihat Bertan Berdanoglu, and Matil Materials Testing and Innovation Laboratories Co.


  1. 1.
    W.M. Steen: Laser Materials Processing, Springer, London, 2003.CrossRefGoogle Scholar
  2. 2.
    Laser Institute of America: Handbook of Laser Materials Processing, Magnolia Publishing Inc., Pineville, 2001.Google Scholar
  3. 3.
    S.M. Shariff, T.K. Pal, G. Padmanbham, and S.V. Joshi: Surf. Eng., 2010, vol. 26 (3), pp. 199–208.CrossRefGoogle Scholar
  4. 4.
    S. Bonss, M. Seifert, B. Brenner, and E. Beyer: Proc. SPIE, 2003, vol. 4973.Google Scholar
  5. 5.
    R.C. Crafer and P.J. Oakley: Laser Processing in Manufacturing, Chapman & Hall, London, 1993.CrossRefGoogle Scholar
  6. 6.
    R.J. DiMelfi, P.G. Sanders, B. Hunter, J.A. Eastman, K.J. Sawley, K.H. Leong, and J.M. Kramer: Surf. Coat. Technol., 1998, vol. 106, pp. 30–43.CrossRefGoogle Scholar
  7. 7.
    S. Aldajah, G.R. Fenske, and S. Kumar: J. Tribol., 2003, vol. 125 (3), pp. 643–48.CrossRefGoogle Scholar
  8. 8.
    J. Pou, C. Trillo, R. Soto, A.F. Doval, M. Bountinguiza, F. Lusquinos, F. Quintero, and M. Perez-Amor: J. Laser Appl., 2003, vol. 15, p. 4.CrossRefGoogle Scholar
  9. 9.
    M. Wiechec, B. Baker, T. McNelley, M. Matthews, A. Rubenchick, M. Rotter, R. Wu, and S. Beach: World J. Eng. Technol., 2017, vol. 5, pp. 97–112.Google Scholar
  10. 10.
    L. Li: Opt. Las. Eng., 2000, vol. 34, pp. 231–53.CrossRefGoogle Scholar
  11. 11.
    W.Q. Chen, C.S. Roychoudhuri, and C.M. Banas: Opt. Eng., 1994, vol. 33, pp. 3662–69.CrossRefGoogle Scholar
  12. 12.
    F. Bachmann: Appl. Surf. Sci., 2003, vol. 208, pp. 125–36.CrossRefGoogle Scholar
  13. 13.
    E. Kennedy, G. Byrne, and D.N. Collins: J. Mater. Process, 2004, vol. 1855, pp. 155–56.Google Scholar
  14. 14.
    I. R. Pashby, S. Barnes, B. G. Bryden: J. Mater Process Technol. 2003, 139(1–3), 585–88.CrossRefGoogle Scholar
  15. 15.
    S.M. Shariff, T.K. Pal, G. Padmanabham, and S.V. Joshi: Surf. Coat. Technol., 2013, vol. 228, pp. 14–26.CrossRefGoogle Scholar
  16. 16.
    L. Ruifeng, J. Yajuan, L. Zhuguo, and Q. Kai: J. Mater. Eng. Performance, 2014, 23, 3085–94.CrossRefGoogle Scholar
  17. 17.
    B. Leibinger: Werkzeug Laser, Ein Lichtstrahl erobert die industrielle Fertigung, Vogel Buchverlag Wurzburg, 1. Airflage, 2006.Google Scholar
  18. 18.
    O. Yazici and S. Yilmaz: Tribol. Int., 2018, vol. 119, pp. 222–29.CrossRefGoogle Scholar
  19. 19.
    O. Yazici: Ph.D. Thesis, Institute of Sciences, Istanbul University, Istanbul, 2018.Google Scholar
  20. 20.
    O. Yazici and S. Yilmaz: 18th Int. Metallurgy & Materials Congr. Proc. Book, Istanbul, 2016, pp. 982–85.Google Scholar
  21. 21.
    H. Guler: J. Comput. Civ. Eng., 2013, vol. 27 (3), pp. 292–306.CrossRefGoogle Scholar
  22. 22.
    S.R. Lewis, S. Fretwell-Smith, P.S. Goodwin, L. Smith, R. Lewis, M. Aslam, D.I. Fletcher, K. Murray, and R. Lambert: Wear, 2016, vol. 366, pp. 268–78.CrossRefGoogle Scholar
  23. 23.
    A. Claire, O. Oyelola, J. Falkes, and P. Farayibi: J. Las. Appl., 2012, vol. 24, p. 3.Google Scholar
  24. 24.
    W.R. Tyfour, J.H. Beynon, and A. Kapoor: Wear, 1995, vol. 180, pp. 79–89.CrossRefGoogle Scholar
  25. 25.
    C.C. Viafara, M.I. Castro, J.M. Velez, and A. Toro: Wear, 2005, vol. 259, pp. 405–11.CrossRefGoogle Scholar
  26. 26.
    F. Alwahdi, F.J. Franklin, and A. Kapoor: Wear, 2005, vol. 58, pp. 1031–37.CrossRefGoogle Scholar
  27. 27.
    F.C.R. Hernandez, N.G. Demas, D.D. Davis, A.A. Polycarpou, and L. Maal: Wear, 2007, vol. 263, pp. 766–72.CrossRefGoogle Scholar
  28. 28.
    J. Kalousek: Wear, 2005, vol. 258, p. 13305.CrossRefGoogle Scholar
  29. 29.
    A. Kapoor, F.J. Franklin, S.K. Wong, and M. Ishida: Wear, 2002, vol. 253, pp. 257–64.CrossRefGoogle Scholar
  30. 30.
    L. Deters and M. Proksch: Wear, 2005, vol. 258, pp. 981–91.CrossRefGoogle Scholar
  31. 31.
    M. Sol-Sanchez, L. Pirozzolo, F. Moreno-Navarro, and R. Gamez: Eng. Struct., 2016, 119, 13–23.CrossRefGoogle Scholar
  32. 32.
    U. Olofsson and T. Telliskivi: Wear, 2003, vol. 254, pp. 80–93.CrossRefGoogle Scholar
  33. 33.
    U.P. Singh, B. Roy, S. Jha, and S.K. Bhattacharyya: Mater. Sci. Technol., 2001, vol. 17 (1), pp. 33–38.CrossRefGoogle Scholar
  34. 34.
    M. Tomicic-Torlakovic: Metalurgıja, 2014, vol. 53 (4), pp. 717–20.Google Scholar
  35. 35.
    Online database: Railroad Forums (Railroad Net, 2014), Accessed 9 Oct 2017.
  36. 36.
  37. 37.
    European Committee for Standardization: EN 13674-1:2011+A1, 2017, Railway applications-Track-Rail-Part 1: Vignole railway rails 46 kg/m and above.Google Scholar
  38. 38.
    “Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,” E23-12C, ASTM International, West Conshohocken, PA.Google Scholar
  39. 39.
    R.K. Shiue and C. Chen: Metall. Trans. A, 1992, vol. 23A, p. 163.CrossRefGoogle Scholar
  40. 40.
    D.I. Pantelis, E. Bouyiouri, N. Kouloumbi, P. Vassiliou, and A. Koutsomichalis: Surf. Coat. Technol., 2002, vol. 161, pp. 125–34.CrossRefGoogle Scholar
  41. 41.
    A.C. Agudelo, J.R. Gancedo, J.F. Marco, M.F. Creus, E. Gallego-Lluesma, J. Desimoni, and R.C. Mercader: Appl. Surf. Sci., 1999, vol. 148, pp. 171–82.CrossRefGoogle Scholar
  42. 42.
    H. Pantser and V. Kujanppaa: Surf. Coat. Technol., 2006, vol. 200, p. 2627.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.1st Regional Directorate, Railway Maintenance DepartmentTurkish State Railways (TCDD)KadikoyTurkey
  2. 2.Faculty of Engineering, Department of Metallurgical and Materials EngineeringIstanbul University–CerrahpasaAvcilarTurkey

Personalised recommendations