Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 1076–1090 | Cite as

New Insights into the Characterization and Formation of the Interface of A356/AZ91D Bimetallic Composites Fabricated by Compound Casting

  • Guangyu Li
  • Wenming JiangEmail author
  • Wenchao Yang
  • Zailiang Jiang
  • Feng Guan
  • Haixiao Jiang
  • Zitian Fan
Article
  • 63 Downloads

Abstract

In the present study, the A356/AZ91D bimetallic composites were prepared by the lost foam casting (LFC) solid–liquid compound process, and the characterization and formation of the interface of the A356/AZ91D bimetallic composites were investigated. The crystallographic orientations of intermetallic compounds in the interface layer were also studied. The results obtained showed that the interface layer was constituted by four regions: Mg2Si + Al3Mg2, Mg2Si + Al3Mg2 + Al12Mg17, Mg2Si + Al12Mg17, and Al12Mg17 + δ-Mg eutectic + Mg2Si. The formation of the interface layer was attributed to fusion bonding and diffusion bonding, and the Al3Mg2, Al12Mg17, and α-Al12Mg17 dendritic crystals and Al12Mg17 + δ-Mg eutectic intermetallic compounds successively formed in the interface layer. The Al3Mg2 and Al12Mg17 phases grew, respectively, with {0001} and {111} preferred crystallographic orientation, while the texture of the Mg2Si phase was essentially random in the interface. The interface layer of the A356/AZ91D bimetallic composites had a higher hardness than the substrates, and the Mg2Si phase obtained the highest hardness in the intermetallic phases. The shear strength and tensile strength of the A356/AZ91D bimetallic composites reached 47.67 and 48.17 MPa, respectively. The fracture surface of the bimetallic composites exhibited a brittle fracture morphology with a partial plastic deformation, and the fracture mainly initiated with the junction zone between the Mg2Si + Al3Mg2 and Mg2Si + Al12Mg17 intermetallic layers.

Notes

Acknowledgments

The authors acknowledge the support provided by the National Natural Science Foundation of China (Grant Nos. 51775204 and 51204124), the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP201821), the Natural Science Foundation of Hubei Province, China (Grant No. 2017CFB488), the Research Project of State Key Laboratory of Materials Processing and Die & Mould Technology, and the Analytical and Testing Center, HUST.

References

  1. 1.
    J.F. Nie: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3891–3939.CrossRefGoogle Scholar
  2. 2.
    X.X. Dong, Y.J. Zhang, and S.X. Ji: Mater. Sci. Eng. A, 2017, vol. 700, pp. 291–300.CrossRefGoogle Scholar
  3. 3.
    Y.M. Zhu, S.W. Xu, and J.F. Nie: Acta Mater., 2018, vol. 143, pp. 1–12.CrossRefGoogle Scholar
  4. 4.
    S.M. Kayhan, A. Tahmasebifar, M. Koç, Y. Usta, A. Tezcaner, and Z. Evis: Mater. Des., 2016, vol. 93, pp. 397–408.CrossRefGoogle Scholar
  5. 5.
    L. Yang, Z. Li, Y. Zhang, S. Wei, and F. Liu: Appl. Surf. Sci., 2018, vol. 435, pp. 1187–98.CrossRefGoogle Scholar
  6. 6.
    M. Sivapragash, P. Kumaradhas, B. StanlyJonesRetnam, X. FelixJoseph, and U.T.S. Pillai: Mater. Des., 2016, vol. 90, pp. 713–22.CrossRefGoogle Scholar
  7. 7.
    B. Feng, Y. Xin, F. Guo, H. Yu, Y. Wu, and Q. Liu: Acta Mater., 2016, vol. 120, pp. 379–90.CrossRefGoogle Scholar
  8. 8.
    J.S. Kim, K.S. Lee, Y.N. Kwon, B.J. Lee, Y.W. Chang, and S. Lee: Mater. Sci. Eng. A, 2015, vol. 628, pp. 1–10.CrossRefGoogle Scholar
  9. 9.
    H. Chang, M.Y. Zheng, W.M. Gan, K. Wu, E. Maawad, and H.G. Brokmeier: Scripta Mater., 2009, vol. 61, pp. 717–20.CrossRefGoogle Scholar
  10. 10.
    C.Y. Liu, Q. Wang, Y.Z. Jia, R. Jing, B. Zhang, M.Z. Ma, and R.P. Liu: Mater. Sci. Eng. A, 2012, vol. 556, pp. 1–8.CrossRefGoogle Scholar
  11. 11.
    A. Dorbane, B. Mansoor, G. Ayoub, V.C. Shunmugasamy, and A. Imad: Mater. Sci. Eng. A, 2016, vol. 651, pp. 720–33.CrossRefGoogle Scholar
  12. 12.
    Z.D. Liang, G.L. Qin, L.Y. Wang, X.M. Meng, and F. Li: Mater. Sci. Eng. A, 2015, vol. 645, pp. 170–80.CrossRefGoogle Scholar
  13. 13.
    M. Kimura, A. Fuji, and S. Shibata: Mater. Des., 2015, vol. 85, pp. 169–79.CrossRefGoogle Scholar
  14. 14.
    Y. Wang and P.B. Prangnell: Mater. Charact., 2017, vol. 134, pp. 84–95.CrossRefGoogle Scholar
  15. 15.
    Y. Gao, Y. Morisada, H. Fujii, and J. Liao: Mater. Sci. Eng. A, 2018, vol. 711, pp. 109–18.CrossRefGoogle Scholar
  16. 16.
    B. Zhu, W. Liang, and X. Li: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6584–88.CrossRefGoogle Scholar
  17. 17.
    M. Joseph Fernandus, T. Senthilkumar, V. Balasubramanian, and S. Rajakumar: Mater. Des., 2012, vol. 33, pp. 31–41.CrossRefGoogle Scholar
  18. 18.
    G. Mahendran, V. Balasubramanian, and T. Senthilvelan: Int. J. Adv. Manuf. Technol., 2009, vol. 42, pp. 689–95.CrossRefGoogle Scholar
  19. 19.
    J. Zhang, G. Luo, Y. Wang, Q. Shen, and L. Zhang: Mater. Lett., 2012, vol. 83, pp. 189–91.CrossRefGoogle Scholar
  20. 20.
    G. Xu, A.A. Luo, Y. Chen, and A.K. Sachdev: Mater. Sci. Eng. A, 2014, vol. 595, pp. 154–58.CrossRefGoogle Scholar
  21. 21.
    E. Hajjari, M. Divandari, S.H. Razavi, S.M. Emami, T. Homma, and S. Kamado: J. Mater. Sci., 2011, vol. 46, pp. 6491–99.CrossRefGoogle Scholar
  22. 22.
    E. Hajjari, M. Divandari, S.H. Razavi, T. Homma, and S. Kamado: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4667–77.CrossRefGoogle Scholar
  23. 23.
    W. Jiang, Z. Fan, G. Li, L. Yang, and X. Liu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6487–97.CrossRefGoogle Scholar
  24. 24.
    S. Fan, W. Jiang, G. Li, J. Mo, and Z. Fan: Mater. Manuf. Process., 2017, vol. 32, pp. 1391–97.CrossRefGoogle Scholar
  25. 25.
    W.D. Griffiths and M.J. Ainsworth: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3137–49.CrossRefGoogle Scholar
  26. 26.
    W.M. Jiang, Z.T. Fan, D.J. Liu, D.F. Liao, Z. Zhao, X.P. Dong, and H.B. Wu: Int. J. Cast Met. Res., 2012, vol. 25, pp. 47–52.CrossRefGoogle Scholar
  27. 27.
    L. Wang, N. Limodin, A.E. Bartali, Jean-François Witz, R. Seghir, Jean-Yves Buffiere, and E. Charkaluk: Mater. Sci. Eng. A, 2016, vol. 673, pp. 362–72.CrossRefGoogle Scholar
  28. 28.
    X.J. Liu, S.H. Bhavnani, and R.A. Overfelt: J. Mater. Process. Technol., 2007, vol. 182, pp. 333–42.CrossRefGoogle Scholar
  29. 29.
    J. Shayegh, S. Hossainpour, M. Rezaei, and A. Charchi: Int. Commun. Heat Mass Transfer, 2010, vol. 37, pp. 1396–1402.CrossRefGoogle Scholar
  30. 30.
    W. Jiang, Z. Fan, D. Liu, D. Liao, X. Dong, and X. Zong: Mater. Sci. Eng. A, 2013, vol. 560, pp. 396–403.CrossRefGoogle Scholar
  31. 31.
    G. Li, W. Jiang, Z. Fan, Z. Jiang, X. Liu, and F. Liu: Int. J. Adv. Manuf. Technol., 2017, vol. 91, pp. 1355–68.CrossRefGoogle Scholar
  32. 32.
    W. Jiang, G. Li, Z. Fan, L. Wang, and F. Liu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 2462–70.CrossRefGoogle Scholar
  33. 33.
    S.M. Emami, M. Divandari, E. Hajjari, and H. Arabi: Int. J. Cast Met. Res., 2013, vol. 26, pp. 43–50.CrossRefGoogle Scholar
  34. 34.
    K.A. Guler, A. Kisasoz, and A. Karaaslan: Mater. Test., 2014, vol. 56, pp. 700–02.CrossRefGoogle Scholar
  35. 35.
    G. Liu, Q. Wang, L. Zhang, B. Ye, H. Jiang, and W. Ding: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 661–72.CrossRefGoogle Scholar
  36. 36.
    O. Fornaro and H.A. Palacio: J. Mater. Sci., 2009, vol. 44, pp. 4342–47.CrossRefGoogle Scholar
  37. 37.
    I.U. Haq, J.S. Shin, and Z.H. Lee: Met. Mater. Int., 2004, vol. 10, pp. 89–96.CrossRefGoogle Scholar
  38. 38.
    J.C. Liu, J. Hu, X.Y. Nie, H.X. Li, Q. Du, J.S. Zhang, and L.Z. Zhuang: Mater. Sci. Eng. A, 2015, vol. 635, pp. 70–76.CrossRefGoogle Scholar
  39. 39.
    S.M. Emami, M. Divandari, H. Arabi, and E. Hajjari: J. Mater. Eng. Perform., 2013, vol. 22, pp. 123–30.CrossRefGoogle Scholar
  40. 40.
    K. He, J.H. Zhao, P. Li, J.S. He, and Q. Tang: Mater. Des., 2016, vol. 112, pp. 553–64.CrossRefGoogle Scholar
  41. 41.
    N. Liu, C.C. Liu, C.Y. Liang, and Y.G. Zhang: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3556–64.CrossRefGoogle Scholar
  42. 42.
    U.R. Kattner and T.B. Massalski: ASM International, Material Park, OH, 1990.Google Scholar
  43. 43.
    M. Khodai and N. Parvin: J. Mater. Process. Technol., 2008, vol. 206, pp. 1–6.CrossRefGoogle Scholar
  44. 44.
    V. Raghavan: J. Phase Equil. Diffus., 2007, vol. 28, pp. 189–91.CrossRefGoogle Scholar
  45. 45.
    Q.G. Wang, and C.J. Davidson: J. Mater. Sci., 2001, vol. 36, pp. 739–50.CrossRefGoogle Scholar
  46. 46.
    A.T. Dinsdale: Calphad, 1991, vol. 15, pp. 317–425.CrossRefGoogle Scholar
  47. 47.
    Y. Fu, Y. Zhang, J. Jie, K. Svynarenko, C. Liang, and T. Li: China Foundry, 2017, vol. 14, pp. 194–98.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Guangyu Li
    • 1
    • 2
  • Wenming Jiang
    • 1
    • 2
    Email author
  • Wenchao Yang
    • 1
    • 2
  • Zailiang Jiang
    • 1
    • 2
  • Feng Guan
    • 1
    • 2
  • Haixiao Jiang
    • 1
    • 2
  • Zitian Fan
    • 1
    • 2
  1. 1.State Key Laboratory of Materials Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations