Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 772–788 | Cite as

Solidification of Ni-Re Peritectic Alloys

  • W. J. BoettingerEmail author
  • D. E. Newbury
  • N. W. M. Ritchie
  • M. E. Williams
  • U. R. Kattner
  • E. A. Lass
  • K.-W. Moon
  • M. B. Katz
  • J. H. Perepezko


Differential thermal analysis (DTA) and microstructural and microprobe measurements of DTA and as-cast Ni-Re alloys with compositions between 0.20 and 0.44 mass fraction Re provide information to resolve differences in previously published Ni-Re phase diagrams. This investigation determines that the peritectic invariant between liquid, Re-rich hexagonal close packed and Ni-rich face center cubic phases, L + HCP → FCC, occurs at 1561.1 °C ± 3.4 °C (1σ) with compositions of liquid, FCC and HCP phases of 0.283 ± 0.036, 0.436 ± 0.026, and 0.828 ± 0.037 mass fraction Re, respectively. Analysis of the microsegregation in FCC alloys yields a partition coefficient for solidification, k = 1.54 ± 0.09 (mass frac./mass frac.). A small deviation from Scheil behavior due to dendrite tip kinetics is documented in as-cast samples. No evidence of an intermetallic phase is observed.



William J. Boettinger acknowledges support from the U.S. Department of Commerce, National Institute of Standards and Technology, under financial assistance Award 70NANB15H279. The DTA measurements of K. Hildal and T. Sossaman, Department of Materials Science and Engineering, University of Wisconsin, the metallographic preparation of Sandra Claggett and the initial TEM work by Yaakov Idell, NIST, are greatly appreciated. Michael Katz is employed by the University of Maryland and is supported by NIST Grant 70NANB16H003.


  1. 1.
    N. Saunders and A.P. Miodownik, CALPHAD (Calculation of phase diagrams): A comprehensive guide, Pergamon, Oxford, 1998.Google Scholar
  2. 2.
    S. B. Maisel, N. Schindzielorz, A. Mottura, R. C. Reed, and S. Müller, Physical Review B 2014 vol. 90, 094110.CrossRefGoogle Scholar
  3. 3.
    R. P. Elliott, Constitution of Binary Alloys, First Supplement, McGraw-Hill 1965, pp. 666-667.Google Scholar
  4. 4.
    S.A. Pogodin and M.A. Skryabina: Sektora. Fiz. Khim., 1954, vol. 25, pp. 81-88.Google Scholar
  5. 5.
    T.B. Massalski: Binary Alloy Phase Diagrams, ASM International, Materials Park, 1990.Google Scholar
  6. 6.
    A. Nash and P. Nash: Bull. Alloy Phase Diagrams, 1985, vol.6, pp. 348-350.CrossRefGoogle Scholar
  7. 7.
    H. Okamoto: J. Phase Equilibria, 1992, vol. 13, p. 335. Also H. Okamoto: J. Phase Equilibria Diffus., 2012, vol. 33, p. 346.Google Scholar
  8. 8.
    E. M. Savitskii, M. A. Tylkina, and E. P. Arskaya, Izv Vuz Tsvetn Met., 1970, vol. 4, pp.113-116.Google Scholar
  9. 9.
    C.M. Neubauer, D. Mari and D. C. Dunand: Scr. Metall. Mater., 1994, vol.31, pp. 99-104.CrossRefGoogle Scholar
  10. 10.
    S. Narita: Master’s thesis, Graduate School of Hokkaido University, 2003.Google Scholar
  11. 11.
    S. Saito, T. Takashima, K. Miyama, K. Kurokawa and T. Narita, Materials Transactions, 2012,vol. 53, pp. 1078-1083.CrossRefGoogle Scholar
  12. 12.
    W.J. Boettinger, M.E. Williams, K.-W. Moon, G.B. McFadden, P. N. Patrone and J. H. Perepezko, Journal of Phase Equilibria and Diffusion, 2017, vol. 38, pp. 750-763.CrossRefGoogle Scholar
  13. 13.
    K. Yaqoob, J.-M. Joubert, Journal of Solid State Chemistry, 2012, vol. 196, pp. 320–325.CrossRefGoogle Scholar
  14. 14.
    W. Huang and Y. A. Chang, Mater. Sci. Eng., 1999, vol. A259, pp. 110-119.CrossRefGoogle Scholar
  15. 15.
    Automated Flow for Materials Discovery: Accessed 6 Oct 2016.
  16. 16.
    Open Quantum Materials Database: Accessed 6 Oct 2016.
  17. 17.
    The Materials Project: Accessed 6 Oct 2016.
  18. 18.
    H. W. Kerr & W. Kurz, International Materials Reviews, 1996, vol.41, pp. 129-164.CrossRefGoogle Scholar
  19. 19.
    W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko: NIST Special Publication 960-15. November 2006.
  20. 20.
    M. Hillert: Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis, 2nd edn., 2008, Cambridge University Press, Cambridge, p. 244.Google Scholar
  21. 21.
    A T Dinsdale, CALPHAD, 1991, vol.15, pp. 317-425.CrossRefGoogle Scholar
  22. 22.
    A.D. Pelton and W.T. Thompson: Prog. Solid State Chem., vol. 10(part 3), 1975, pp. 119-155.CrossRefGoogle Scholar
  23. 23.
    C.E. Campbell: NIST, unpublished research, 2016.Google Scholar
  24. 24.
    W. J. Boettinger and J. A. Warren, Met. & Mat. Transactions A, 1996, vol. 27A, pp. 657-669.CrossRefGoogle Scholar
  25. 25.
    W.J. Boettinger: J. Phase Equilibria Diffus., 2016, vol. 37, pp. 4–18. See also W.J. Boettinger, S.R. Coriell, and R.K. Trivedi: Rapid Solidification Processing: Principles and Technologies IV, R. Mehrabian and P. A. Parrish, eds., Claitor’s Publishing Division, Baton Rouge, LA, 1988, pp. 13–25.Google Scholar
  26. 26.
    S.C. Flood, J. D.Hunt, Appl. Sci. Res., 1987, vol. 44, pp 27-42.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • W. J. Boettinger
    • 1
    • 2
    Email author
  • D. E. Newbury
    • 3
  • N. W. M. Ritchie
    • 3
  • M. E. Williams
    • 2
  • U. R. Kattner
    • 2
  • E. A. Lass
    • 2
  • K.-W. Moon
    • 2
  • M. B. Katz
    • 2
  • J. H. Perepezko
    • 4
  1. 1.Theiss ResearchLa JollaUSA
  2. 2.Materials Science and Engineering DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Materials Measurement Science DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  4. 4.Department of Materials Science and EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations