Advertisement

Initiation and Propagation of Plastic Yielding in Duplex Stainless Steel

  • Andrew C. Poshadel
  • Michael A. Gharghouri
  • Paul R. Dawson
Article
  • 34 Downloads

Abstract

The elastic-plastic behavior of a two-phase stainless steel alloy is explored at the crystal scale for five levels of stress biaxiality. The crystal lattice (elastic) strains were measured with neutron diffraction (ND) using tubular samples subjected to different combinations of axial load and internal pressure to achieve a range of biaxial stress ratios. Finite element simulations were conducted on virtual polycrystals using loading histories that mimicked the experimental protocols. Two-phase microstructures were instantiated based on microscopy images of the grain and phase topologies and on crystallographic orientation distributions from ND. Detailed comparisons were made between the measured and computed lattice strains for several crystal reflections in both phases for scattering vectors in the axial, radial, and hoop directions that confirm the model’s ability to accurately predict the evolving local stress states. The strength-to-stiffness parameter for multiaxial stress states developed for single-phase polycrystals was applied to explain the initiation of yielding across the five levels of stress biaxiality. Finally, building off the multiaxial strength-to-stiffness, the propagation of yielding over the volume of a polycrystal was estimated in terms of an equation that provides the local stress necessary to initiate yielding within crystals in terms of the macroscopic stress.

Notes

Acknowledgments

This study was supported by the US Office of Naval Research (ONR) under Contract N00014-09-1-0447. Neutron diffraction experiments were performed on the L3 diffractometer of the Canadian Neutron Beam Centre located at the NRU Reactor of CNL (Canadian Nuclear Laboratories).

References

  1. 1.
    S.L. Wong and P.R. Dawson: Acta Mater., 2010, vol. 58, pp. 1658–1678.CrossRefGoogle Scholar
  2. 2.
    S.L. Wong and P.R. Dawson: Acta Mater., 2011, vol. 59, pp. 6901–6916.CrossRefGoogle Scholar
  3. 3.
    T. Marin, P.R. Dawson, M.A. Gharghouri, and R.B. Rogge: Acta Mater., 2008, vol. 56, pp. 4183–4199.CrossRefGoogle Scholar
  4. 4.
    T. Marin, P.R. Dawson, and M.A. Gharghouri: J. Mech. Phys. Solids, 2012, vol. 60, pp. 921–944.CrossRefGoogle Scholar
  5. 5.
    A.C. Poshadel and P.R. Dawson: Metall. Mater. Trans. A, 2018,  https://doi.org/10.1007/s11661-018-5013-5.CrossRefGoogle Scholar
  6. 6.
    M. Kasemer, M. Echlin, J. Stinville, T. Pollock, and P. Dawson: Acta Mater., 2017, vol. 136, pp. 288–302.CrossRefGoogle Scholar
  7. 7.
    I. Alvarez-Armas: Recent Pat. Mech. Eng., 2008, vol. 1, pp. 51–57.Google Scholar
  8. 8.
    G. Lutjering and J.C. Williams: Titanium, 2nd ed., Springer, Berlin, 2007.Google Scholar
  9. 9.
    T.S. Han and P.R. Dawson: Mater. Sci. Eng. A, 2005, vol. 405, pp. 18–33.CrossRefGoogle Scholar
  10. 10.
    A. Baczmanski and C. Braham: Acta Mater., 2004, vol. 52, pp. 1133–1142.CrossRefGoogle Scholar
  11. 11.
    R. Dakhlaoui, A. Baczmanski, C. Braham, S. Wronski, K. Wierzbanowski, and E.C. Oliver: Acta Mater., 2006, vol. 54, pp. 5027–5039.CrossRefGoogle Scholar
  12. 12.
    R. Dakhlaoui, C. Braham, and A. Baczmanski: Mater. Sci. Eng. A, 2007, vol. 444, pp. 6–17.CrossRefGoogle Scholar
  13. 13.
    V. Imbeni, A. Mehta, S.W. Robertson, T.W. Duerig, A.R. Pelton, and R.O. Ritchie: SMST 2003—Int. Conf. Shape Mem. Superelastic Technol., 2003, pp. 267–76.Google Scholar
  14. 14.
    A. Mehta, X.-Y. Gong, A.R. Pelton, and R.O. Ritchie: Adv. Mater., 2007, vol. 19, pp. 1183–1186.CrossRefGoogle Scholar
  15. 15.
    T. Gnäupel-Herold, D. Liu, and H. Prask: in NIST Center for Neutron Research Highlights 2007, 2007.Google Scholar
  16. 16.
    O. Benafan, S.A. Padula II, H.D. Skorpenske, K. An, and R. Vaidyanathan: Rev. Sci. Instrum., 2014, vol. 85, p. 103901.CrossRefGoogle Scholar
  17. 17.
    S.V. Petegem, J. Wagner, T. Panzner, M. Upadhyay, T. Trang, and H.V. Swygenhoven: Acta Mater., 2016, vol. 105, pp. 404–416.CrossRefGoogle Scholar
  18. 18.
    A. Creuziger, M. Iadicola, T. Foecke, E. Rust, and D. Banerjee: J. Mater., 2017, vol. 69, pp. 902–906.Google Scholar
  19. 19.
    M. Kubo, H. Yoshida, A. Uenishi, S. Suzuki, Y. Nakazawa, T. Hama, and H. Takuda: ISIJ Int., 2016, vol. 56, pp. 669–677.CrossRefGoogle Scholar
  20. 20.
    A. Makinde, L. Thibodeau, and K. Neale: Exp. Mech., 1992, vol. 32, pp. 138–144.CrossRefGoogle Scholar
  21. 21.
    G. Hommer and A. Stebner: in Fracture, Fatigue, Failure and Damage Evolution, A. Beese, A. Zehnder, and S. Xia, eds., Springer, Cham, 2016, pp. 45–50.CrossRefGoogle Scholar
  22. 22.
    D. Collins, M. Mostafavi, R. Todd, T. Connolley, and A. Wilkinson: Acta Mater., 2015, vol. 90, pp. 46–58.CrossRefGoogle Scholar
  23. 23.
    T. Erinosho, D. Collins, A. Wilkinson, R. Todd, and F. Dunne: Int. J. Plast., 2016, vol. 83, pp. 1–18.CrossRefGoogle Scholar
  24. 24.
    M. Brieu, J. Diani, and N. Bhatnagar: J. Test. Eval., 2007, vol. 35, pp. 364–372.Google Scholar
  25. 25.
    D. Collins, T. Erinosho, F. Dunne, R. Todd, T. Connolley, M. Mostafavi, H. Kupfer, and A. Wilkinson: Acta Mater., 2017, vol. 124, pp. 290–304.CrossRefGoogle Scholar
  26. 26.
    G. Geandier, D. Thiaudiere, R.N. Randriamazaoro, R. Chiron, S. Djaziri, B. Lamongie, Y. Diot, E. Le Bourhis, P.O. Renault, P. Goudeau, A. Bouaffad, O. Castelnau, D. Faurie, and F. Hild: Rev. Sci. Instrum., 2010, vol. 81, p .103903.CrossRefGoogle Scholar
  27. 27.
    G. Geandier, D. Faurie, P.O. Renault, D. Thiaudiere, and E. Le Bourhis: J. Appl. Crystallogr., 2014, vol. 47, pp. 181–187.CrossRefGoogle Scholar
  28. 28.
    S. Djaziri, D. Faurie, P.O. Renault, E. Le Bourhis, P. Goudeau, G. Geandier, and D. Thiaudiere: Acta Mater., 2013, vol. 61, pp. 5067–5077.CrossRefGoogle Scholar
  29. 29.
    S. Djaziri, P.O. Renault, E. Le Bourhis, P. Goudeau, D. Faurie, G. Geandier, C. Mocuta, and D. Thiaudiere: J. Appl. Phys., 2014. https://doi.org/10.1063/1.4894616CrossRefGoogle Scholar
  30. 30.
    J. Capek, T. Panzner, K. Sofinowski, D. Drozdenko, and K. Mthis: in Magnesium Technology 2018, D. Orlov, V. Joshi, K. Solanki, and N. Neelameggham, eds., Springer, Cham, 2018, pp. 199–202.CrossRefGoogle Scholar
  31. 31.
    S.V. Petegem, A. Guitton, M. Dupraz, A. Bollhalder, K. Sofinowski, M. Upadhyay, and H.V. Swygenhoven: Exp. Mech., 2017, vol. 57, pp. 569–580.CrossRefGoogle Scholar
  32. 32.
    K. Chatterjee, J. Kob, J.J.T. Weiss, H. Philipp, J. Becker, C. Purohit, S. Gruner, and A. Beaudoin: J. Mech. Phys. Solids, 2017, vol. 109, pp. 95–116.CrossRefGoogle Scholar
  33. 33.
    G. Hommer, J. Park, P. Collins, A. Pilchak, and A. Stebner: in Advancement of Optical Methods in Experimental Mechanics, S. Yoshida, L. Lamberti, and C. Sciammarella, eds., Springer, Cham, 2017, vol. 3, pp. 6–70.Google Scholar
  34. 34.
    W.-N. Hsu, E. Polatidis, M. Smid, N. Casati, S.V. Petegem, and H.V. Swygenhoven: Acta Mater., 2018, vol. 144, pp. 874–883.CrossRefGoogle Scholar
  35. 35.
    E. Polatidis, W. Hsu, M. Smid, T. Panzner, S. Chakrabarty, P. Pant, and H.V. Swygenhoven: Scripta Mater., 2018, vol. 147, pp. 27–32.CrossRefGoogle Scholar
  36. 36.
    P.R. Dawson and D.E. Boyce: Metall and Mat Trans A., 2018.  https://doi.org/10.1007/s11661-018-5085-2.CrossRefGoogle Scholar
  37. 37.
    A.C. Poshadel, M. Gharghouri, and P.R. Dawson: Sensitivity of crystal stress distributions to the definition of virtual two-phase microstructures, 2017. arXiv:1707.08962v1 [cond-mat.mtrl-sci].
  38. 38.
    R. Quey, P.R. Dawson, and F. Barbe: Comput. Methods Appl. Mech. Eng., 2011, vol. 200, pp. 1729–1745.CrossRefGoogle Scholar
  39. 39.
    A.D. Rollett, S.B. Lee, R. Campman, and G.S. Rohrer: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 627–658.CrossRefGoogle Scholar
  40. 40.
    H. Ledbetter: in Handbook of Elastic Properties of Solids, Liquids, and Gases, M. Levy, ed., Academic, New York, 2001, vol. 3, pp. 291–297.Google Scholar
  41. 41.
    G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed., M.I.T. Press, Cambridge, MA, 1971.Google Scholar
  42. 42.
    H. Ritz, P. Dawson, and T. Marin: J. Mech. Phys. Solids, 2010, vol. 58, pp. 54–72.CrossRefGoogle Scholar
  43. 43.
    A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1875–1886.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2019

Authors and Affiliations

  • Andrew C. Poshadel
    • 1
  • Michael A. Gharghouri
    • 2
  • Paul R. Dawson
    • 1
  1. 1.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  2. 2.Canadian Nuclear LaboratoriesChalk RiverCanada

Personalised recommendations