Metallurgical and Materials Transactions A

, Volume 50, Issue 2, pp 609–615 | Cite as

Microstructural Modeling of the Mechanical Behavior of Face-Centered Cubic Nanocrystalline-Twinned Systems

  • Tamir S. Hasan
  • S. Ziaei
  • M. A. ZikryEmail author


Nanocrystalline-twinned materials exhibit significantly higher strength and ductility than nanocrystalline face-centered cubic (f.c.c.) materials without twins. In this investigation, a dislocation-density-based multiple-slip crystalline constitutive and a nonlinear finite element formulation have been used to understand how twin volume fractions, grain and twin orientations and texture, dislocation-density accumulation, and large inelastic strains affect the competing effects of strengthening and toughening mechanisms in nanotwinned materials. The predictions have indicated that grain and twin orientations with respect to different loading axes significantly affect how dislocation densities evolve, and that this has a dominant effect on both ductility and strength. The predictions were validated with experiments pertaining to nanotwinned f.c.c. copper aggregates. The validated predictions can potentially be used as design guidelines for optimizing the mechanical behavior of nanotwinned crystalline materials, such that behavior can be mitigated and controlled at the nanocrystalline scale.



Support from the Consortium for Advanced Simulation of Light Water Reactors (CASL), an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR227 is gratefully acknowledged.


  1. 1.
    Z. S. You, L. Lu, and K. Lu: Acta Mater., 2011, vol. 59, pp. 6927–37.CrossRefGoogle Scholar
  2. 2.
    M. Dao, L. Lu, Y.F. Shen, and S. Suresh: Acta Mater., 2006, vol. 54, pp. 5421–32.CrossRefGoogle Scholar
  3. 3.
    J.W. Christian and S. Mahajan: Prog. Mater Sci., 1995, vol. 39, pp. 1–157.CrossRefGoogle Scholar
  4. 4.
    O. Rezvanian, M.A. Zikry, and A.M. Rajendran: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 2007, vol. 463, pp. 2833–53.CrossRefGoogle Scholar
  5. 5.
    L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.CrossRefGoogle Scholar
  6. 6.
    I.J. Beyerlein and C.N. Tomé: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci., 2010, vol. 466, pp. 2517–44.CrossRefGoogle Scholar
  7. 7.
    I.J. Beyerlein, R.J. McCabe, and C.N. Tomé: J. Mech. Phys. Solids, 2011, vol. 59, pp. 988–1003.CrossRefGoogle Scholar
  8. 8.
    Z.W. Shan, L. Lu, A.M. Minor, E.A. Stach, and S.X. Mao: JOM, 2008, vol. 60, pp. 71–74.CrossRefGoogle Scholar
  9. 9.
    C.C. Koch, D.G. Morris, K. Lu and A. Inoue: MRS Bull., 1999, vol. 24, pp. 54–58.CrossRefGoogle Scholar
  10. 10.
    L. Lu, T. Zhu, Y. Shen, M. Dao, K. Lu, and S. Suresh: Acta Mater., 2009, vol. 57, pp. 5165–73.CrossRefGoogle Scholar
  11. 11.
    Y.F. Shen, L. Lu, Q. H. Lu, Z. H. Jin, and K. Lu: Scr. Mater., 2005, vol. 52, pp. 989–94.CrossRefGoogle Scholar
  12. 12.
    V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2003, vol. 51, pp. 4135–47.CrossRefGoogle Scholar
  13. 13.
    X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, and J.D. Embury: Acta Mater., 2004, vol. 52, pp. 995–1002.CrossRefGoogle Scholar
  14. 14.
    H.L. Wang, Z.B. Wang, and K. Lu: Acta Mater., 2011, vol. 59, pp. 1818–28.CrossRefGoogle Scholar
  15. 15.
    G.H. Xiao, N.R. Tao, and K. Lu: Scr. Mater., 2011, vol. 65, pp. 119–22.CrossRefGoogle Scholar
  16. 16.
    X.H. Chen, L. Lu, and K. Lu: Scr. Mater., 2011, vol. 64, pp. 311–14.CrossRefGoogle Scholar
  17. 17.
    L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, and S. Suresh: Acta Mater., 2005, vol. 53, pp. 2169–79.CrossRefGoogle Scholar
  18. 18.
    C.S. Hong, N.R. Tao, X. Huang, and K. Lu: Acta Mater., 2010, vol. 58, pp. 3103–16.CrossRefGoogle Scholar
  19. 19.
    C.S. Hong, N.R. Tao, K. Lu, and X. Huang: Scr. Mater., 2009, vol. 61, pp. 289–92.CrossRefGoogle Scholar
  20. 20.
    H. Hsiao, C. Liu, H. Lin, T. Liu, C. Lu, Y. Huang, C. Chen, and K.N. Tu: Science, 2012, vol. 336, pp. 1007–10.CrossRefGoogle Scholar
  21. 21.
    Z.X. Wu, Y.W. Zhang, and D.J. Srolovitz: Acta Mater., 2009, vol. 57, pp. 4508–18.CrossRefGoogle Scholar
  22. 22.
    X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao: Nature, 2010, vol. 464, pp. 877–81.CrossRefGoogle Scholar
  23. 23.
    H. Zhou, S. Qu, and W. Yang: Modell. Simul. Mater. Sci. Eng., 2010, vol. 18, art. no. 065002.Google Scholar
  24. 24.
    B. Wu and Y. Wei: Acta Mech. Solida Sin., 2008, vol. 21, pp. 189–97.CrossRefGoogle Scholar
  25. 25.
    M.A. Zikry and M. Kao: J. Mech. Phys. Solids, 1996, vol. 44, pp. 1765–98.CrossRefGoogle Scholar
  26. 26.
    P. Shanthraj and M.A. Zikry: Acta Mater., 2011, vol. 59, pp. 7695–702.CrossRefGoogle Scholar
  27. 27.
    M.A. Zikry: Comput. Struct., 1994, vol. 50, pp. 337–50.CrossRefGoogle Scholar
  28. 28.
    M. Niewczas: Dislocations in Solids, vol. 13, Elsevier, Amsterdam, 2007, pp. 263–364.CrossRefGoogle Scholar
  29. 29.
    S. Cronje, R.E. Kroon, W.D. Roos, and J.H. Neethling: Bull. Mater. Sci., 2013, vol. 36, pp. 157–62.CrossRefGoogle Scholar
  30. 30.
    C.J. Youngdahl, J.R. Weertman, R.C. Hugo, and H.H. Kung: Scr. Mater., 2001, vol. 44, pp. 1475–78.CrossRefGoogle Scholar
  31. 31.
    S. Ziaei and M.A. Zikry: Acta Mater., 2016, vol. 120, pp. 435–42.CrossRefGoogle Scholar
  32. 32.
    E.I. Galindo-Nava: Mater. Des., 2015, vol. 83, pp. 327–43.CrossRefGoogle Scholar
  33. 33.
    S. Ziaei and M.A. Zikry: Metall. Mater. Trans. A, 2015, vol. 46, pp. 4478–90.CrossRefGoogle Scholar
  34. 34.
    S. Ziaei, Q. Wu, and M.A. Zikry: J. Mater. Res., 2015, vol. 30, pp. 2348–59.CrossRefGoogle Scholar
  35. 35.
    Y.T. Zhu, X.Z. Liao, and X.L. Wu: Prog. Mater Sci., 2012, vol. 57, pp. 1–62.CrossRefGoogle Scholar
  36. 36.
    D. Bhattacharyya, E.K. Cerreta, R. McCabe, M. Niewczas, G.T. Gray III, A. Misra, and C.N. Tomé: Acta Mater., 2009, vol. 57, pp. 305–15.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations