Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 234–248 | Cite as

Strengthening Mechanisms in Ultrafine-Grained and Sub-grained High-Purity Aluminum

  • Naoya Kamikawa
  • Taisuke Hirochi
  • Tadashi Furuhara
Article
  • 136 Downloads

Abstract

This study investigates the effect of grain/sub-grain size, boundary misorientation, and dislocation density on mechanical properties of nanostructured aluminum. A fully recrystallized high-purity aluminum was deformed to different strains from low to ultrahigh strains by a combination of conventional cold rolling and accumulative roll-bonding, followed by annealing for recovery and structural coarsening, to produce sub-grained samples dominated by low-angle boundaries and ultrafine-grained samples dominated by high-angle boundaries. The ultrafine-grained samples showed unusual discontinuous yielding and had a very high strength, which was positively deviated from the extrapolation of the Hall–Petch curve in coarse grains. On the other hand, sub-grained samples showed continuous yielding, and the strength was lower than that of ultrafine-grained samples at the same structural size. It is suggested that in the ultrafine-grained samples, due to lack of dislocation sources in the grains, extremely high stress is required for yielding, which is responsible for the unexpected discontinuous yielding and extra Hall–Petch strengthening. On the other hand, in the sub-grained samples, dislocations in the low-angle dislocation boundaries may act as active dislocation sources, leading to a lower yield stress.

Notes

Acknowledgments

This research was financially supported partly by the Grant-in-Aid for Scientific Research on Innovative Area, “Bulk Nanostructured Metals” (Grant No. 22102006) and partly by the Grant-in-Aid for Research Activity Start-up (Grant No. 21860010), through the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, which are gratefully appreciated.

References

  1. 1.
    E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 747-753.CrossRefGoogle Scholar
  2. 2.
    N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25-28.Google Scholar
  3. 3.
    L.L. Shaw: J. Metals (JOM), 2000, vol. 52, pp. 41-45.Google Scholar
  4. 4.
    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu: J. Metals (JOM), 2006, vol. 58, pp. 33-39.Google Scholar
  5. 5.
    A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski and A. Yanagida: CIRP AnnalsManufacturing Tech., 2008, vol. 57, pp. 716-735.CrossRefGoogle Scholar
  6. 6.
    M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427-556.CrossRefGoogle Scholar
  7. 7.
    R.Z. Valiev, A.P. Zhilyaev and T.G. Langdon: Bulk Nanostructured Materials: Fundamentrals and Applications, Wiley, Hoboken, NJ, 2014.Google Scholar
  8. 8.
    R.Z. Valiev and Y. Zhu: Trans. Mater. Res. Soc. Japan, 2015, vol. 40, pp. 309-318.CrossRefGoogle Scholar
  9. 9.
    C.Y. Yu, P.W. Kao and C.P. Cheng: Acta Mater., 2005, vol. 53, pp. 4019-4028.CrossRefGoogle Scholar
  10. 10.
    N. Kamikawa, X. Huang, N. Tsuji and N. Hansen: Acta Mater., 2009, vol. 57, pp. 4198-4208.CrossRefGoogle Scholar
  11. 11.
    G.M. Le, A. Godfrey and N. Hansen: Mater. Des., 2013, vol. 49, pp. 360-367.CrossRefGoogle Scholar
  12. 12.
    K.N. Zhu, A. Godfrey, N. Hansen and X. D. Zhang: Mater. Des., 2017, vol. 117, pp. 95-103.CrossRefGoogle Scholar
  13. 13.
    S. Gao, M. Chen, S. Chen, N. Kamikawa, A. Shibata and N. Tsuji: Mater. Trans., 2014, vol. 55, pp. 73-77.CrossRefGoogle Scholar
  14. 14.
    S. Gao, M. Chen, M. Joshi, A. Shibata and N. Tsuji: J. Mater. Sci., 2014, vol. 49, pp. 6536-6542.CrossRefGoogle Scholar
  15. 15.
    J.W. Wyrzykowski and M.W. Grabski: Mater. Sci. Eng., 1982, vol. 56, pp. 197-200.CrossRefGoogle Scholar
  16. 16.
    Y.Z. Tian, S. Gao, L.J. Zhao, S. Lu, R. Pippan, Z.F. Zhang and N. Tsuji: Scripta Mater., 2018, vol. 142, pp. 88-91.CrossRefGoogle Scholar
  17. 17.
    D. Terada, M. Inoue, H. Kitahara and N. Tsuji: Mater. Trans., 2008, vol. 49, pp. 41-46.CrossRefGoogle Scholar
  18. 18.
    Z. Li, L. Fu and A. Shan: Mater. Letters, 2013, vol. 96, pp. 1-4.CrossRefGoogle Scholar
  19. 19.
    N. Tsuji, Y. Ito, Y. Saito and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893-899.CrossRefGoogle Scholar
  20. 20.
    R. Saha, R. Ueji and N. Tsuji: Scripta Mater., 2013, vol. 68, pp. 813-816.CrossRefGoogle Scholar
  21. 21.
    X. Huang, N. Tsuji and N. Hansen: Science, 2006, vol. 312, pp. 249-251.CrossRefGoogle Scholar
  22. 22.
    T. Ohashi, M. Kawamukai and H.M. Zbib: Int. J. Plast., 2007, vol. 23, pp. 897-914.CrossRefGoogle Scholar
  23. 23.
    Y. Aoyagi, T. Tsuru and T. Shimokawa: Int. J. Plast., 2014, vol. 55, pp. 43-57.CrossRefGoogle Scholar
  24. 24.
    S. Cheng, J.A. Spencer and W.W. Milligan: Acta Mater., 2003, vol. 51, pp. 4505–4518.CrossRefGoogle Scholar
  25. 25.
    M. Kato, T. Fujii and S. Onaka: Mater. Trans., 2008, vol. 49, pp. 1278-1283.CrossRefGoogle Scholar
  26. 26.
    I.A. Ovid’ko and N.V. Skiba: Scripta Mater., 2012, vol. 67, pp. 13–16.CrossRefGoogle Scholar
  27. 27.
    I.A. Ovid’ko, A.G. Sheinerman and R.Z. Valiev: Scripta Mater., 2014, vol. 76, pp. 45-48.CrossRefGoogle Scholar
  28. 28.
    H. Van Swygenhoven, M. Spaczér and A. Caro: Nanostruct. Mater., 1998, vol. 10, pp. 819-828.CrossRefGoogle Scholar
  29. 29.
    H. Van Swygenhoven, M. Spaczér, D. Farkas and A. Caro: Nanostruct. Mater., 1999, vol. 12, pp. 323-326.CrossRefGoogle Scholar
  30. 30.
    K. Kinoshita, T. Shimokawa and T. Kinari: Mater. Trans., 2012, vol. 53, pp. 147-155.CrossRefGoogle Scholar
  31. 31.
    J.W. Wyrzykowski and M.W. Grabski: Phil. Mag. A, 1986, vol. 53, pp. 505-520.CrossRefGoogle Scholar
  32. 32.
    P.L. Sun, C.Y. Yu, P.W. Kao and C.P. Chang: Scripta Mater., 2005, vol. 52, pp. 265-269.CrossRefGoogle Scholar
  33. 33.
    N. Kamikawa, T. Hirochi, and T. Furuhara: Proc. 33rd Risø Int. Symp. Mater. Sci. Nanomet. Status Perspect., Technical University of Denmark, 2012, pp. 257–64.Google Scholar
  34. 34.
    T. Hu, K. Ma, T.D. Topping, B. Saller, A. Yousefiani, J.M. Schoenung and E.J. Lavernia: Scripta Mater., 2014, vol. 78-79, pp. 25-28.CrossRefGoogle Scholar
  35. 35.
    V.V. Polyakova, I.P. Semenova, A.V. Polyakov, D.K. Magomedova, Y. Huang and T.G. Langdon: Materials Letters, 2017, vol. 190, pp. 256-259.CrossRefGoogle Scholar
  36. 36.
    J.R. Gatti and P.P. Bhattacharjee: J. Alloys Comp., 2014, vol. 615, pp. 950–961.CrossRefGoogle Scholar
  37. 37.
    I. Zuiko and R. Kaibyshev: Mate. Sci. Eng. A, 2017, vol. 702, pp. 53-64.CrossRefGoogle Scholar
  38. 38.
    T. Huang, L. Shuai, A. Wakeel, G. Wu, N. Hansen and X. Huang: Acta Mater., 2018, vol. 156, pp. 369-378.CrossRefGoogle Scholar
  39. 39.
    Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579-583.CrossRefGoogle Scholar
  40. 40.
    L. Su, C. Lu, H. Li, G. Deng and K. Tieu: Mater. Sci. Eng. A, 2014, vol. 614, pp. 148–155.CrossRefGoogle Scholar
  41. 41.
    Y.B. Zhang and O.V. Mishin: Mater. Charact., 2017, vol. 129, pp. 323–328.CrossRefGoogle Scholar
  42. 42.
    N. Kamikawa, N. Tsuji, X. Huang and N. Hansen: Acta Mater., 2006, vol. 54, pp. 3055-3066.CrossRefGoogle Scholar
  43. 43.
    R.K. Ham: Phil. Mag., 1961, vol. 6, pp. 1183-1184.CrossRefGoogle Scholar
  44. 44.
    N. Kamikawa and N. Tsuji: Mater. Trans., 2016, vol. 57, pp. 1720-1728.CrossRefGoogle Scholar
  45. 45.
    Y. Ito and Z. Horita: Mater. Sci. Eng. A, 2009, vol. 503, pp. 32–36.CrossRefGoogle Scholar
  46. 46.
    N. Kamikawa and T. Furuhara: J. Mater. Process. Technol., 2013, vol. 213, pp. 1412-1418.CrossRefGoogle Scholar
  47. 47.
    Y. Ito, K. Edalati and Z. Horita: Mater. Sci. Eng. A, 2017, vol. 679, pp. 428-434.CrossRefGoogle Scholar
  48. 48.
    Z. Horita, K. Kishikawa, K. Kimura, K. Tatsumi and T.G. Langdon: Mater. Sci. Forum, 2007, vols. 558-559, pp. 1273-1278.CrossRefGoogle Scholar
  49. 49.
    R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu and T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5-8.CrossRefGoogle Scholar
  50. 50.
    H.W. Höppel, J. May and M. Göken: Adv. Eng. Mater., 2004, vol. 6, pp. 781-784.CrossRefGoogle Scholar
  51. 51.
    H.-W. Kim, S.-B. Kang, N. Tsuji and Y. Minamino: Acta Mater., 2005, vol. 53, pp. 1737-1749.CrossRefGoogle Scholar
  52. 52.
    J.E. Bailey and P.B. Hirsch: Phil. Mag., 1960, vol. 5, pp. 485-497.CrossRefGoogle Scholar
  53. 53.
    N. Hansen: Scripta Mater., 2004, vol. 51, pp. 801-806.CrossRefGoogle Scholar
  54. 54.
    N. Hansen and X. Huang: Acta Mater., 1998, vol. 46, pp. 1827-1836.CrossRefGoogle Scholar
  55. 55.
    G.W.C. Kaye and T.H. Laby: Tables of Physical and Chemical Constants, 14th ed., Longman, London, 1973, pp. 31.Google Scholar
  56. 56.
    G.I. Taylor: J. Inst. Metals, 1938, vol. 62, pp. 307-324.Google Scholar
  57. 57.
    W.G. Johnston: J. Appl. Phy., 1962, vol. 33, pp. 2716-2730.CrossRefGoogle Scholar
  58. 58.
    E.O. Hall: Yield point phenomena in metals and alloys, Plenum Press, New York, 1970.CrossRefGoogle Scholar
  59. 59.
    D.J. Lloyd: Metal Sci., 1980, vol. 14, pp. 193-198.CrossRefGoogle Scholar
  60. 60.
    M.W. Grabski and R. Korski: Phil. Mag., 1970, vol. 22, pp. 707-715.CrossRefGoogle Scholar
  61. 61.
    J.P. Hirth: Metall. Trans., 1972, vol. 3, pp. 3047-3067.CrossRefGoogle Scholar
  62. 62.
    J. Kacher, B.P. Eftink, B. Cui and I.M. Robertson: Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, pp. 227-243.CrossRefGoogle Scholar
  63. 63.
    J.C.M. Li: Trans. Metall. Soc. AIME, 1963, vol. 227, pp. 239-247.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Naoya Kamikawa
    • 1
  • Taisuke Hirochi
    • 2
    • 3
  • Tadashi Furuhara
    • 4
  1. 1.Department of Mechanical Science and Engineering, Graduate School of Science and TechnologyHirosaki UniversityAomoriJapan
  2. 2.Tohoku UniversitySendaiJapan
  3. 3.Mitsubishi Heavy Industries, Ltd.KobeJapan
  4. 4.Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations