Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 504–511 | Cite as

Electrical and Optical Properties of Plasma-Sprayed Yttria

  • Jiri Kotlan
  • Ramachandran Chidambaram Seshadri
  • Pavel Ctibor
Article
  • 41 Downloads

Abstract

The aim of this study is to investigate electrical properties of Yttria which is known for its outstanding thermal and chemical stabilities. Y2O3 coatings deposited on carbon steel substrates were prepared using an atmospheric plasma-spray system. Three sets of samples were sprayed and characterized in order to determine their microstructural, electrical, and optical aspects of sensitivity to spray distance. All coatings contained only cubic Y2O3 phase and exhibited weak influence of spray distance variations on electrical properties. Relative permittivity values varied between 9.3 and 11.2 in the whole frequency range (50 Hz to 1 MHz) for all samples. Temperature dependence of electrical properties in the range of 20 °C to 120 °C showed good stability of measured values. Electrical resistivity was in the order of magnitude up to 10 × 1012 Ω m for all the samples. SEM observations, porosity, and reflectivity measurements brought an expanded view of microstructural changes at different spray distances.

Notes

Acknowledgments

The authors thank Dr. Zdenek Pala for XRD analysis, Dr. Radek Musalek for SEM observations, and Mr. Rostislav Hribal for the help with electrical properties’ measurements. The authors also thank Prof. Sanjay Sampath for providing the spray facilities at the Center for Thermal Spray Research, Stony Brook, NY. The electrical tests were supported by the Czech Science Foundation under the Grant No. 14-36566G Multidisciplinary research center for advanced materials.

References

  1. 1.
    J. Wang, J. Zhang, K. Ning, D. Luo, H. Yang, D. Yin, D. Tang, and L.B. Kong: J. Am. Ceram. Soc., 2016, vol. 99 (5), pp. 1671–1675.CrossRefGoogle Scholar
  2. 2.
    R.S. Razavi, M. Ahsanzadeh-Vadeqani, M. Barekat, M. Naderi, S.H. Hashemi, and A.K. Mishra: Ceram. Int., 2016, vol. 142, pp. 7819–7823.CrossRefGoogle Scholar
  3. 3.
    R. Ghasemin, R. Shoja-Razavi, R. Mozafarinia, and H. Jamali: Ceram. Int., 2014, vol. 40, pp. 347–355.CrossRefGoogle Scholar
  4. 4.
    J.H. Kim, H. Song, K.H. Kim, and C.B. Lee: Surf. Interface Anal., 2015, vol. 47, pp. 301–307.CrossRefGoogle Scholar
  5. 5.
    H.K. Seok, E.Y. Choi, P.R. Cha, M.C. Son, and B.L. Choi: Surf. Coat. Technol., 2011, vol. 205, pp. 3341–3346.CrossRefGoogle Scholar
  6. 6.
    J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara, and K. Uematsu: J. Am. Ceram. Soc., 2007, vol. 90, pp. 2327–2332.CrossRefGoogle Scholar
  7. 7.
    J. Kitamura, Z. Tang, H. Mizuno, K. Sato, and A. Burgess: J. Therm. Spray. Technol, 2011, vol. 20, pp. 170–175.CrossRefGoogle Scholar
  8. 8.
    P. Mechnich and W. Braue: J. Europ. Ceram. Soc., 2013, vol. 33, pp. 2645–2653.CrossRefGoogle Scholar
  9. 9.
    J. Kotlan, R.C. Seshadri, S. Sampath, P. Ctibor, Z. Pala, and R. Musalek: Ceram. Int., 2015, vol. 41 (9), pp. 11169-11176.CrossRefGoogle Scholar
  10. 10.
    T.K. Lin, D.S. Wuu, S.Y. Huang, and W.K. Wang: Jpn. J. Appl. Phys., 2016, vol. 55, pp. 126201.CrossRefGoogle Scholar
  11. 11.
    M.K. Reddy, S.V. Manorama, and A. R. Reddy: Mat. Chem. and Phys., 2002, vol. 78, pp. 239–245.CrossRefGoogle Scholar
  12. 12.
    G. Mauer, R. Vassen, and D. Stöver: J. Thermal Spray Technol., 2007, vol. 16, pp. 414–424.CrossRefGoogle Scholar
  13. 13.
    J. Kotlan, R.C. Seshadri, S. Sampath, P. Ctibor: Ceramics International, 2016, vol. 42 (9), pp. 11010–11014.CrossRefGoogle Scholar
  14. 14.
    S. Sampath, and H. Herman (1996) J. Thermal Spray Technol., 5(4), 445–456.CrossRefGoogle Scholar
  15. 15.
    J. Kitamura, H. Mizuno, N. Kato and I. Aoki: Mat. Trans., 2006, vol. 47 (7), pp. 1677–1683.CrossRefGoogle Scholar
  16. 16.
    ECIA-EIA-198-1, Ceramic Dielectric Capacitors Classes I, II, III and IV Part I: characteristics and requirements.Google Scholar
  17. 17.
    T. Tsutsumi: Jpn. J. Appl. Phys., 1970, vol. 9, pp. 735–739.CrossRefGoogle Scholar
  18. 18.
    H.B. Xiong, L.L. Zheng, L. Li, and A. Vaidya (2005) Int. J. Heat Mass Trans., 48, 5121–5133.CrossRefGoogle Scholar
  19. 19.
    J. Robertson: Eur. Phys. J. Appl. Phys., 2004, vol. 28, pp. 265–291.CrossRefGoogle Scholar
  20. 20.
    B. Arif: J. Materials and Electronic Devices, 2015, vol.1, pp. 28–32.Google Scholar
  21. 21.
    P. Ctibor, V. Štengl, and Z. Pala: J. Advanced Ceramics, 2013, 2(3), 218–226.CrossRefGoogle Scholar
  22. 22.
    J.X. Zheng, G. Ceder, T. Maxisch, W.K. Chim, and W.K. Choi: Physical Review B, 2006, vol. 73, 104101.CrossRefGoogle Scholar
  23. 23.
    K. Ramachandran, V. Selvarajan, P.V. Ananthapadmanabhan, and K.P. Sreekumar: Thin Solid Films, 1998, vol. 315, pp. 144–152.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Jiri Kotlan
    • 1
  • Ramachandran Chidambaram Seshadri
    • 2
  • Pavel Ctibor
    • 3
  1. 1.Department of Electrotechnology, Faculty of Electrical EngineeringCzech Technical University in PraguePrague 6Czech Republic
  2. 2.Department of Materials Science & EngineeringStony Brook UniversityStony BrookUSA
  3. 3.Materials Engineering DepartmentInstitute of Plasma Physics CASPrague 8Czech Republic

Personalised recommendations