Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 209–219 | Cite as

Design and Development of Lightly Alloyed Ferritic Fire-Resistant Structural Steels

  • Cameron T. Gross
  • Dieter IsheimEmail author
  • Semyon Vaynman
  • Morris E. Fine
  • Yip-Wah Chung


To improve safety in case of building fires, stricter building codes have been proposed requiring structural steels to maintain two-thirds of their room-temperature yield strength after exposure to 873 K (600 °C) for longer than 20 minutes. To address this need, we have designed lightly alloyed structural steels, employing computational thermodynamics in combination with fundamental principles of precipitation strengthening and its temperature dependence, precipitate stability, characterization by optical microscopy and atom probe tomography (APT), and mechanical testing at room and elevated temperatures. The design process resulted in low-carbon ferritic steels with small alloying additions of V, Nb, and Mo that maintain over 80 pct of room-temperature yield strength in compression, and nearly 70 pct in tension, after 2 hours of exposure at 873 K (600 °C). APT demonstrates the formation of nanoscale MX and M2X (where M = V + Nb + Mo and X = C + N) precipitates after exposure to 873 K (600 °C). The favorable high-temperature mechanical properties are discussed with a model of precipitation strengthening by detachment-stress-mediated dislocation pinning at nanoscale semi-coherent MX precipitates.



The authors would like to acknowledge the NSF CMMI Division [Grant Numbers NSF-CMMI-1130000 and CMMI-1462850] for providing funding for this research and Nucor for supplying one of the alloys gratis used in this research. This work made use of the MatCI Facility which receives support from the MRSEC Program (NSF DMR-1720139) of the Materials Research Center at Northwestern University. APT was performed at the Northwestern University Center for Atom Probe Tomography (NUCAPT). The local-electrode atom probe tomograph at NUCAPT was acquired and upgraded with equipment grants from the MRI Program of the National Science Foundation (NSF DMR-0420532) and the DURIP Program of the Office of Naval Research (N00014-0400798, N00014-0610539, N00014-0910781, N00014-1712870). NUCAPT received support from the MRSEC Program (NSF DMR-1720139) at the Materials Research Center, the SHyNE Resource (NSF ECCS-1542205), and the Institute for Sustainability and Energy at Northwestern (ISEN).


  1. 1.
    T.J. MacGinley, Steel Structures: Practical Design Studies, second ed., CRC Press, 1998.Google Scholar
  2. 2.
    Y. Mizutani, K. Ishibashi, K. Yoshii, Y. Watanabe, R. Chijhwa, and Y. Yoshida: Shinnittetsu Giho, July 2004, pp. 38–44.Google Scholar
  3. 3.
    Standard Test Methods for Fire Tests of Building Construction and Materials, ASTM International, 2000.Google Scholar
  4. 4.
    4. D.B. Moore, T. Lennon, Prog. Struct. Eng. Mater., 1997, vol. 1, pp. 4-9.CrossRefGoogle Scholar
  5. 5.
    M.G. Goode: Fire Protection of Structural Steel in High-Rise Buildings, NIST, 2004, p. 88.Google Scholar
  6. 6.
    AISC Specification for Structural Steel Buildings, American Institute of Steel Construction, 2010, p. 610.Google Scholar
  7. 7.
    7. W. Sha, F.S. Kelly, Z.X. Guo, J. Mater. Eng. Perform., 1999, vol. 8, pp. 606-612.CrossRefGoogle Scholar
  8. 8.
    8. Y.D. Morozov, O.N. Chevskaya, G.A. Filippov, A.N. Muratov, Metallurgist, 2007, vol. 51, pp. 356-366.CrossRefGoogle Scholar
  9. 9.
    9. W.-B. Lee, S.-G. Hong, C.-G. Park, S.-H. Park, Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1689-1698.CrossRefGoogle Scholar
  10. 10.
    10. M. Assefpour-Dezfuly, B.A. Hugaas, A. Brownrigg, Mater. Sci. Technol., vol 6, 1990, pp. 1210-1214.CrossRefGoogle Scholar
  11. 11.
    11. R. Wan, F. Sun, L. Zhang, A. Shan, Mater. Design, 2012, vol. 36, pp. 227-232.CrossRefGoogle Scholar
  12. 12.
    12. Z.-Y. Zhang, Q.-l. Yong, X.-J. Sun, Z.-D. Li, J.-Y. Kang, G.-D. Wang, J. Iron Steel Res. Int, 2015, vol. 22, pp. 337-343.CrossRefGoogle Scholar
  13. 13.
    13. E. Arzt, D. Wilkinson, Acta Metall., 1986, vol. 34, pp. 1893-1898.CrossRefGoogle Scholar
  14. 14.
    14. J. Rösler, E. Arzt, Acta Metall., 1988, vol. 36, pp. 1043-1051.CrossRefGoogle Scholar
  15. 15.
    15. E. Arzt, J. Rösler, Acta Metall., 1988, vol. 36, pp. 1053-1060.CrossRefGoogle Scholar
  16. 16.
    16. J. Rösler, E. Arzt, Acta Metall. Mater., 1990, vol. 38, pp. 671-683.CrossRefGoogle Scholar
  17. 17.
    17. C. Wagner, Z. Elektrochemie, 1961, vol. 65, pp. 581-591.Google Scholar
  18. 18.
    18. I. Lifshitz, V. Slyozov, Phys. Chem. Sol., 1961, vol. 19, pp. 35-50.CrossRefGoogle Scholar
  19. 19.
    19. C. Enloe, K. Findley, C. Parish, M. Miller, B. De Cooman, J. Speer, Scripta mater., 2013, vol. 68, pp. 55-58.CrossRefGoogle Scholar
  20. 20.
    20. P. Maugis, M. Gouné, Acta Mater., 2005, vol 53, pp. 3359-3367.CrossRefGoogle Scholar
  21. 21.
    21. M. Perez, E. Courtois, D. Acevedo, T. Epicier, P. Maugis, Phil. Mag. Lett., 2007, vol. 87, pp. 645-656.CrossRefGoogle Scholar
  22. 22.
    22. H.-J. Kestenbach, E.V. Morales, Acta. Micro., 1998, vol. 7, pp. 22-33.Google Scholar
  23. 23.
    23. Z.-G. Yang, M. Enomoto, Mater. Sci. Eng. A, 2002, vol. 332, pp. 184-192.CrossRefGoogle Scholar
  24. 24.
    24. E.K. Storms, C.P. Kempter, J. Chem. Phys., 1965, vol. 42, pg. 2043.CrossRefGoogle Scholar
  25. 25.
    25. E.K. Storms, N.H. Krikorian, J. Chem. Phys., 1959, vol. 63, pp. 1747-1749.CrossRefGoogle Scholar
  26. 26.
    26. C.P. Kempter, E.K. Storms, J. Less-Common Met., 1967, vol. 13, pp. 443-447.CrossRefGoogle Scholar
  27. 27.
    27. K. Miyata, T. Kushida, T. Omura, Y. Komizo, Metall. and Mat. Trans. A, 2003, vol. 34, pp. 1565-1573.CrossRefGoogle Scholar
  28. 28.
    28. D.J. Larson, T.J. Prosa, R.M. Ulfig, B.P. Geiser, T.F. Kelly, Local Electrode Atom Probe Tomography: A User’s Guide. Springer, New York, (2013).CrossRefGoogle Scholar
  29. 29.
    Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature, ASTM International, 2009.Google Scholar
  30. 30.
    Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures with Conventional or Rapid Heating Rates and Strain Rates, ASTM International, 2000.Google Scholar
  31. 31.
    Standard Test Methods for Elevated Temperature Tension Tests of Metallic Materials, ASTM International, 2009.Google Scholar
  32. 32.
    M. Boccalini Jr. and A. Sinatora: 6th International Tooling Conference Proceedings, 2002, pp. 509–24.Google Scholar
  33. 33.
    H.J. Frost, M.F. Ashby, Deformation-mechanism maps: the plasticity and creep of metals and ceramics, Pergamon Press, 1982.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Cameron T. Gross
    • 1
  • Dieter Isheim
    • 1
    • 2
    Email author
  • Semyon Vaynman
    • 1
  • Morris E. Fine
    • 1
  • Yip-Wah Chung
    • 1
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Northwestern University Center for Atom Probe Tomography (NUCAPT)EvanstonUSA

Personalised recommendations