Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 199–208 | Cite as

Enhanced Plasticity of Cu-Zr-Ti Bulk Metallic Glass and Its Correlation with Fragility

  • Soumen Mandal
  • Ansu J Kailath
Article
  • 85 Downloads

Abstract

Inadequate room-temperature plasticity limits the application of bulk metallic glasses (BMGs). This study focuses on enhancing the plasticity of BMGs for widening their applications. Composition modification of Cu60Zr25Ti15 through the minor addition of Ni is the approach adopted in this study. A systematic increase in mechanical properties is observed with increasing Ni content (up to 5 at. pct), followed by a decrease thereafter. Values of yield stress (2425 MPa), fracture stress (2513 MPa), maximum stress (2725 MPa), and plastic strain (16 pct) exhibited by (Cu60Zr25Ti15)95Ni5 BMGs are higher than those reported in the literature for Cu-BMGs (high Cu content). Analysis of the glass transition region indicated that the enthalpy values of the exothermic heat flow prior to glass transition (ΔHbg) and the fragility parameter (m) are well correlated with the plasticity of the alloys. The increasing fragility parameter and exothermic enthalpy correspond to higher free volume. Therefore, high plasticity values can be attributed to the free volume modification (creation and distribution) caused by Ni addition. This free volume modification initiates shear bands and promotes their branching; consequent interactions among them increase the resistance to shear band propagation and, thereby, delay the fracture.

Notes

Acknowledgments

Funding from the CSIR-NML (OLP-203) is greatly acknowledged. The help received from Ms. Siuli (CSIR-NML) with the SEM micrographs is also acknowledged. One of the authors (SM) acknowledges the research fellowship received from MHRD, India.

References

  1. 1.
    J.W. Qiao, H.L. Jia, C.P. Chuang, E.W. Huang, G.Y. Wang, P.K. Liaw, Y. Ren, and Y. Zhang: Scripta Mater., 2010, vol. 63, pp. 871–74.CrossRefGoogle Scholar
  2. 2.
    C.L. Qin, W. Zhang, K. Asami, H. Kimura, X.M. Wang, and A. Inoue: Acta Mater., 2006, vol. 54, pp. 3713–19.CrossRefGoogle Scholar
  3. 3.
    P. Jinhong, Y. Pan, J. Wu, and H. Xiancong: Rare Met. Mater. Eng., 2014, vol. 43, pp. 32–35.CrossRefGoogle Scholar
  4. 4.
    M.L. Lee, Y. Li, and C.A. Schuh: Acta Mater., 2004, vol. 52, pp. 4121–31.CrossRefGoogle Scholar
  5. 5.
    K.B. Kim, J. Das, F. Baier, M.B. Tang, W.H. Wang, and J. Eckert: Appl. Phys. Lett., 2006, vol. 88, pp. 051911–051913.CrossRefGoogle Scholar
  6. 6.
    S.W. Lee, M.Y. Huh, E. Fleury, and J.C. Lee: Acta Mater., 2006, vol. 54, pp. 349–55.CrossRefGoogle Scholar
  7. 7.
    J. Pan, K.C. Chan, Q. Chen, N. Li, S.F. Guo, and L. Liu: J. Alloys Compd., 2010, vol. 504, pp. S74–S77.CrossRefGoogle Scholar
  8. 8.
    J. Gu, M. Song, S. Ni, S. Guo, and Y. He: Mater. Des., 2013, vol. 47, pp. 706–10.CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, S. Kou, H. Suo, R. Wang, and Y. Ding: Mater. Des., 2010, vol. 31, pp. 1029–32.CrossRefGoogle Scholar
  10. 10.
    X. Ji, Y. Pan, and F. Ni: Mater. Des., 2009, vol. 30, pp. 842–45.CrossRefGoogle Scholar
  11. 11.
    A. Inoue, W. Zhang, T. Zhang, and K. Kurosaka: Acta Mater., 2001, vol. 49, pp. 2645–52.CrossRefGoogle Scholar
  12. 12.
    A. Inoue and W. Zhang: Mater. Trans., 2002, vol. 43, pp. 2921–25.CrossRefGoogle Scholar
  13. 13.
    W. Zhang and A. Inoue: Mater. Trans., 2003, vol. 44, pp. 2220–23.CrossRefGoogle Scholar
  14. 14.
    Y. Pan, Y. Zeng, L. Jing, L. Zhang, and J. Pi: Mater. Des., 2014, vol. 55, pp. 773–77.CrossRefGoogle Scholar
  15. 15.
    A. Caron, R. Wunderlich, D.V. Louzguine-Luzgin, G. Xie, A. Inoue, and H.-J. Fecht: Acta Mater., 2010, vol. 58, pp. 2004–13.CrossRefGoogle Scholar
  16. 16.
    N. Zheng, R.T. Qu, S. Pauly, M. Calin, T. Gemming, Z.F. Zhang, and J. Eckert: Appl. Phys. Lett., 2012, vol. 100, pp. 1419011–1419014.Google Scholar
  17. 17.
    L.Y. Chen, Z.D. Fu, G.Q. Zhang, X.P. Hao, Q.K. Jiang, X.D. Wang, Q.P. Cao, H. Franz, Y.G. Liu, H.S. Xie, and S.L. Zhang: Phys. Rev. Lett., 2008, vol. 100, pp. 0755011–0755014.Google Scholar
  18. 18.
    Z. Liu, R. Li, G. Liu, W. Su, H. Wang, Y. Li, M. Shi, X. Luo, G. Wu, and T. Zhang: Acta Mater., 2012, vol. 60, pp. 3128–39.CrossRefGoogle Scholar
  19. 19.
    Z.Y. Suo, K.Q. Qiu, Q.F. Li, Y.L. Ren, and Z.Q. Hu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2486–91.CrossRefGoogle Scholar
  20. 20.
    J. Wu, Y. Pan, X. Li, and X. Wang: Mater. Des., 2014, vol. 57, pp. 175–79.CrossRefGoogle Scholar
  21. 21.
    J. Wu, Y. Pan, X. Li, and X. Wang: Mater. Sci. Eng. A, 2014, vol. 608, pp. 16–20.CrossRefGoogle Scholar
  22. 22.
    G.Z. Ma, B.A. Sun, S. Pauly, K.K. Song, U. Kühn, D. Chen, and J. Eckert: Mater. Sci. Eng. A, 2013, vol. 563, pp. 112–16.CrossRefGoogle Scholar
  23. 23.
    W. Zhou, L.T. Kong, J.F. Li, and Y.H. Zhou: J. Mater. Sci., 2012, vol. 47, pp. 4996–5001.CrossRefGoogle Scholar
  24. 24.
    Y.H. Liu, G. Wang, R.J. Wang, M.X. Pan, and W.H. Wang: Science, 2007, vol. 315, pp. 1385–88.CrossRefGoogle Scholar
  25. 25.
    A. Takeuchi and A. Inoue: Mater. Trans., 2005, vol. 46, pp. 2817–29.CrossRefGoogle Scholar
  26. 26.
    CRC Handbook of Chemistry and Physics, 84th ed., D.R. Lide, ed., CRC Press, Boca Raton, FL, 2003; Section 6, Fluid Properties, Enthalpy of Fusion.Google Scholar
  27. 27.
    A.J. Kailath and S. Mandal: Ind. Pat. Off. J., 2016, 2851DEL2014.Google Scholar
  28. 28.
    J. Hu, B.A. Sun, Y. Yang, C.T. Liu, S. Pauly, Y.X. Weng, and J. Eckert: Intermetallics, 2015, vol. 66, pp. 31–39.CrossRefGoogle Scholar
  29. 29.
    C.N. Kuo, H.M. Chen, X.H. Du, and J.C. Huang: Intermetallics, 2010, vol. 18, pp. 1648–52.CrossRefGoogle Scholar
  30. 30.
    S.Y. Jiang, M.Q. Jiang, L.H. Dai, and Y.G. Yao: Nano. Res. Lett., 2008, vol. 3, pp. 524–29.CrossRefGoogle Scholar
  31. 31.
    D. Klaumünzer, R. Maaß, and J.F. Löffler: J. Mater. Res., 2011, vol. 26, pp. 1453–63.CrossRefGoogle Scholar
  32. 32.
    S.X. Song, H. Bei, J. Wadsworth, and T.G. Nieh: Intermetallics, 2008, vol. 16, pp. 813–18.CrossRefGoogle Scholar
  33. 33.
    B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, and W.H. Wang: Phys. Rev. Lett., 2010, vol. 105, pp. 0355011–03550114.Google Scholar
  34. 34.
    E.S. Park, H.J. Chang, D.H. Kim, T. Ohkubo, and K. Hono: Scripta Mater., 2006, vol. 54, pp. 1569–73.CrossRefGoogle Scholar
  35. 35.
    Y.C. Kim, J.C. Lee, D.H. Kim, and E. Fleury: U.S. Patent US7591916 B2, 2009.Google Scholar
  36. 36.
    C.L. Dai, J.W. Deng, Z.X. Zhang, and J. Xu: J. Mater. Res., 2008, vol. 23, pp. 1249–57.CrossRefGoogle Scholar
  37. 37.
    Z.F. Zhang, G. He, J. Eckert, and L. Schultz: Phys. Rev. Lett., 2003, vol. 91, pp. 0455051–0455054.Google Scholar
  38. 38.
    G. He, Z.F. Zhang, W. Löser, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 2383–95.CrossRefGoogle Scholar
  39. 39.
    Y.F. Sun, S.K. Guan, B.C. Wei, Y.R. Wang, and C.H. Shek: Mater. Sci. Eng. A, 2005, vol. 406, pp. 57–62.CrossRefGoogle Scholar
  40. 40.
    M. Kusy, U. Kühn, A. Concustell, A. Gebert, J. Das, J. Eckert, L. Schultz, and M.D. Baro: Intermetallics, 2006, vol. 14, pp. 982–86.CrossRefGoogle Scholar
  41. 41.
    Z.F. Zhang, J. Eckert, and L. Schultz: Acta Mater., 2003, vol. 51, pp. 1167–79.CrossRefGoogle Scholar
  42. 42.
    C.A. Pampillo: J. Mater. Sci., 1975, vol. 10, pp. 1194–1227.CrossRefGoogle Scholar
  43. 43.
    G. Subhash, R.J. Dowding, and L.J. Kecskes: Mater. Sci. Eng. A, 2002, vol. 334, pp. 33–40.CrossRefGoogle Scholar
  44. 44.
    H.A. Bruck, A.J. Rosakis, and W.L. Johnson: J. Mater. Res., 1996, vol. 11, pp. 503–11.CrossRefGoogle Scholar
  45. 45.
    C.T. Liu, L. Heatherly, J.A. Horton, D.S. Easton, C.A. Carmichael, J.L. Wright, M.H. Yoo, J.A. Horton, and A. Inoue: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1811–20.CrossRefGoogle Scholar
  46. 46.
    H.J. Leamy, T.T. Wang, and H.S. Chen: Metall. Trans., 1972, vol. 3, pp. 699–708.CrossRefGoogle Scholar
  47. 47.
    R.D. Conner, H. Choi-Yim, and W.L. Johnson: J. Mater. Res., 1999, vol. 14, pp. 3292–97.CrossRefGoogle Scholar
  48. 48.
    M. Chen, A. Inoue, W. Zhang, and T. Sakurai: Phys. Rev. Lett., 2006, vol. 96, pp. 2455021–2455024.Google Scholar
  49. 49.
    T.C. Hufnagel, C. Fan, R.T. Ott, J. Li, and S. Brennan: Intermetallics, 2002, vol. 10, pp. 1163–66.CrossRefGoogle Scholar
  50. 50.
    M. Sun, L. Liu, J. Wang, and B. Liu: Acta Metall. Sinica (China), 2005, vol. 41, pp. 534–38.Google Scholar
  51. 51.
    D. Turnbull and M.H. Cohen: J. Chem. Phys., 1970, vol. 52, pp. 3038–41.CrossRefGoogle Scholar
  52. 52.
    F. Spaepen: Acta Metall., 1977, vol. 25, pp. 407–15.CrossRefGoogle Scholar
  53. 53.
    P.S. Steif, F. Spaepen, and J.W. Hutchinson: Acta Metall., 1982, vol. 30, pp. 447–55.CrossRefGoogle Scholar
  54. 54.
    A. Slipenyuk and J. Eckert: Scripta Mater., 2004, vol. 50, pp. 39–44.CrossRefGoogle Scholar
  55. 55.
    C.A. Angell: Science, 1995, vol. 267, pp. 1924–35.CrossRefGoogle Scholar
  56. 56.
    C.A. Angell: Strong and Fragile Liquids, 1985, vol. 3, pp. 3–11.Google Scholar
  57. 57.
    A.S. Argon: Acta Metall., 1979, vol. 27, pp. 47–58.CrossRefGoogle Scholar
  58. 58.
    W.K. An, A.H. Cai, X. Xiong, Y. Liu, G.J. Zhou, Y. Luo, T.L. Li, and X.S. Li: Mater. Sci. Eng. A, 2013, vol. 564, pp. 442–49.CrossRefGoogle Scholar
  59. 59.
    M.M. Trexler and N.N. Thadhani: Progr. Mater. Sci., 2010, vol. 55, pp. 759–839.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.CSIR–National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations