Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 311–325 | Cite as

A New Approach Toward Designing and Synthesizing the Microalloying Zn Biodegradable Alloys with Improved Mechanical Properties

  • Zhilin LiuEmail author


Zinc (Zn) possesses great potential for application in biomedical implants owing to its acceptable levels of biodegradability and biocompatibility. Unfortunately, pure Zn exhibits undesirably low strength and ductility because of the coarsening grain structures, which restrict the biomedical applications of Zn biodegradable metals. Meanwhile, high levels of multiple alloying elements, such as Al, Ag, Mg, Mn, Fe, and Sr, may result in adverse effects that require further medical treatment. In the current study, a new approach toward the design and synthesis of microalloying Zn biodegradable metals with improved mechanical properties is proposed, which relies on the synergetic effects of both grain refiner and fast cooling. Combined with experimental validation, this approach is applied to the microalloying Zn-Mg biodegradable metals. Firstly, the metallurgical interdependence theory is used together with the crystallographic edge-to-edge matching model to predict a new efficient grain refiner for pure Zn biodegradable metals. Then, the predicted grain refiner is prepared and added into super-high-purity Zn (99.995 wt pct) to determine the refining efficiency. The average grain size of microalloying Zn-Mg biodegradable metals was significantly reduced by 88.07 pct. Meanwhile, only 0.1 wt pct Mg promoted a noticeable columnar-to-equiaxed transition in the microstructures. Further, another decrease of 7.14 pct for the equiaxed grain sizes was obtained through introducing the fast cooling during solidification, where small, uniform and equiaxed grain structures fully occurred. Moreover, the mechanical properties of the microalloying Zn-Mg biodegradable metals with and without grain refinement were comparatively investigated. Below the maximum solubility (Cm), a remarkable improvement of the mechanical properties was generated by grain refinement and solid solution. However, a three-dimensional “eutectic-skeleton” formed beyond Cm, which deteriorated the corresponding mechanical properties to some extent. Finally, the mechanisms, responsible for grain refinement and the associated mechanical properties, were interpreted in line with the experimental results and theoretical analysis.



This project was financially supported by National Natural Science Foundation of China with No. 51605496. Sincere appreciation is conveyed to Professor Mingxing Zhang for his kind supervision when the experimental work was being partially carried out at The University of Queensland, and to Mr. Jingqi Zhang at The University of Queensland while carrying out some part of the E2EM simulation work. Zhilin Liu appreciates Jing Ouyang (his wife) for her love, support, and understanding right through the course of his undertaking this work.


  1. 1.
    [1] D. Vojtěch, J. Kubásek, J. Šerák, and P. Novák: Acta Biomater., 2011, vol.7, pp. 3515-22.CrossRefGoogle Scholar
  2. 2.
    [2] N.S. Murni, M.S. Dambatta, S.K. Yeapb, G.R.A. Froemming, and H. Hermawan: Mater. Sci. Eng. C 2015, vol. 49, pp. 560-6.CrossRefGoogle Scholar
  3. 3.
    [3] B. Zberg, P.J. Uggowitzer, and J.F. Löffler: Nature Mater., 2009, vol. 8, pp. 887-91.CrossRefGoogle Scholar
  4. 4.
    [4] Y.F. Zheng, X.N. Gu, and F. Witte: Mater. Sci. Eng. R-Report 2014, vol. 77, pp. 1-34.CrossRefGoogle Scholar
  5. 5.
    [5] J.R. Davis: Handbook of materials for medical devices, Materials Park, OH: ASM International, 2003.Google Scholar
  6. 6.
    [6] C. Xiao, L. Wang, Y. Ren, Sh. Sun, E. Zhang, C. Yan, Q. Liu, X. Sun, F. Shou, J. Duan, H. Wang, and G. Qin: J. Mater. Sci. Technol., 2018, vol. 34(9), pp. 1618-27.CrossRefGoogle Scholar
  7. 7.
    [7] M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C.V. Schnakenburg: Biomaterials, 2006, vol. 27, pp. 4955-62.CrossRefGoogle Scholar
  8. 8.
    [8] B. Liu and Y.F. Zheng: Acta Biomater., 2011, vol. 7, pp. 1407-20.CrossRefGoogle Scholar
  9. 9.
    [9] M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, and M. Vedani: Mater. Sci. Eng. C, 2017, vol. 77, pp. 1170-81.CrossRefGoogle Scholar
  10. 10.
    [10] X. Liu, J. Sun, Y. Yang, F. Zhou, Z. Pu, L. Li, and Y. Zheng: Mater. Lett., 2016, vol. 162, pp. 242-5.CrossRefGoogle Scholar
  11. 11.
    [11] E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, and M. Vedani: J. Mech. Behav. Biomed. Mater., 2016, vol. 60, pp. 581-02.CrossRefGoogle Scholar
  12. 12.
    [12] Y. Liu, Z. Yin, Y. Liu, C. Geng, X. Chen, J. Xu, and J. Peng: Int. J. Electrochem. Sci., 2018, vol. 13, pp. 1640-55.CrossRefGoogle Scholar
  13. 13.
    [13] P.K. Bowen, J. Drelich, and J. Goldman: Adv. Mater., 2013, vol. 25, pp. 2577-82.CrossRefGoogle Scholar
  14. 14.
    L. Rink: Zinc in Human Health, Ios Press, 2011.Google Scholar
  15. 15.
    [15] A. Green and J. Wesemael: Die Cast. Eng., 2009, vol. 03, pp. 56-8.Google Scholar
  16. 16.
    [16] Z.L. Liu: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4755-76.CrossRefGoogle Scholar
  17. 17.
    [17] X. Liu, J. Sun, F. Zhou, Y. Yang, R. Chang, K. Qiu, Z. Pu, L. Li, and Y. Zheng: Mater. Des., 2016, vol. 94, pp. 95-104.CrossRefGoogle Scholar
  18. 18.
    [18] Z. Tang, H. Huang, J. Niu, L. Zhang, H. Zhang, J. Pei, J. Tan, and G. Yuan: Mater. Des., 2017, vol. 117, pp. 84-94.CrossRefGoogle Scholar
  19. 19.
    [19] H. Li, H. Yang, Y. Zheng, F. Zhou, K. Qiu, and X. Wang: Mater. Des., 2015, vol. 83, pp. 95-102.CrossRefGoogle Scholar
  20. 20.
    [20] Z.Z. Shi, J. Yu, and X.F. Liu: Mater. Des., 2018, vol. 144, pp. 343-52.CrossRefGoogle Scholar
  21. 21.
    [22] A. Kafri, S. Ovadia, J. Goldman, J. Drelich, and E. Aghion: Metals, 2018, vol. 8 153.CrossRefGoogle Scholar
  22. 22.
    [23] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: Acta Mater., 2014, vol. 79, pp. 315-26.CrossRefGoogle Scholar
  23. 23.
    [24] D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907-21.CrossRefGoogle Scholar
  24. 24.
    S.E. Offerman, N.H. van Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen. L. Margulies, H.F. Poulsen, M.T. Rekveldt, and S. van der Zwaag: Science, 2002, vol. 298, pp. 1003-5.CrossRefGoogle Scholar
  25. 25.
    [26] D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase transformation in metals and alloys, Taylor & Francis, London, 2009.Google Scholar
  26. 26.
    [27] F. Wang, Z.L. Liu, D. Qiu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 360-70.CrossRefGoogle Scholar
  27. 27.
    [28] Y. Ali, D. Qiu, B. Jiang, F. Pan, and M.X. Zhang: J. Alloys Compd., 2015, vol. 619, pp. 639-51.CrossRefGoogle Scholar
  28. 28.
    [29] M.J. Bermingham, S.D. McDonald, M.S. Dargusch, and D.H. StJohn: Scripta Mater., 2008, vol. 58, pp. 1050-3.CrossRefGoogle Scholar
  29. 29.
    [30] W.J. Jackson: Iron Steel, 1972, vol. 45, pp. 163-72.Google Scholar
  30. 30.
    [31] M.J. Balart, J.B. Patel, F. Gao, and Z. Fan: Metall. Mater. Trans. A, 2016, vol. 47, pp. 4988-5011.CrossRefGoogle Scholar
  31. 31.
    [32] M.X. Zhang, P.M. Kelly, M.A. Easton, and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 1427-38.CrossRefGoogle Scholar
  32. 32.
    [33] M. Easton and D. StJohn: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1911-20.CrossRefGoogle Scholar
  33. 33.
    [34] D.M. Duffy: Science, 2017, vol. 358, pp. 1254-55.CrossRefGoogle Scholar
  34. 34.
    [35] D. Qiu, M.X. Zhang, J.A. Taylor, and P.M. Kelly: Acta Mater., 2009, vol. 57, pp. 3052-9.CrossRefGoogle Scholar
  35. 35.
    [36] F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, and M.X. Zhang: Acta Mater., 2013, vol. 61, pp. 5636-45.CrossRefGoogle Scholar
  36. 36.
    [37] D. Qiu, M.X. Zhang, and P.M. Kelly: Scripta Mater., 2009, vol. 61, pp. 312-5.CrossRefGoogle Scholar
  37. 37.
    [38] Y. Zeng, B. Jiang, M. Zhang, H. Yin, R. Li, and F. Pan: Intermetallics, 2014, vol. 45, pp. 18-23.CrossRefGoogle Scholar
  38. 38.
    [39] M. Li, J.M. Li, D. Qiu, Q. Zhang, G. Wang, and M.X. Zhang: Philos. Mag., 2016, vol. 96, pp. 1556-78.CrossRefGoogle Scholar
  39. 39.
    [40] H. Baker: Alloy Phase Diagrams, ASM Handbook, Vol. 3, Materials Park, OH: ASM International, 1992.Google Scholar
  40. 40.
    G. Hercz, D.L. Andress, H.G. Nebeker, J.H. Shinaberger, D.J. Sherrard, and J.W. Coburn: Am. J. Kidney Dis., 1988, vol. 11(1), pp. 70-5.CrossRefGoogle Scholar
  41. 41.
    [42] J. Kubásek, D. Vojtěch, E. Jablonská, I. Pospíšilová, J. Lipov, and T. Ruml: Mater. Sci. Eng. C, 2016, vol. 58, pp. 24-35.CrossRefGoogle Scholar
  42. 42.
    [43] Z.L. Liu, R.Q. Li, R.P. Jiang, X.Q. Li, and M.X. Zhang: J. Alloys Compd., 2016, vol. 687, pp. 885-92.CrossRefGoogle Scholar
  43. 43.
    K. Törne, F.A. Khan, A. Örnberg, and J. Weissenrieder: Surf. Innovations, 2018, vol. 6(1-2), pp. 81-92.Google Scholar
  44. 44.
    [45] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 830-41.CrossRefGoogle Scholar
  45. 45.
    [46] C.H. Cáceres and D.M. Rovera: J. Light Met., 2001, vol. 1, pp. 151-6.CrossRefGoogle Scholar
  46. 46.
    [47] B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, and M. Easton: Mater. Sci. Eng. A, 2014, vol. 599, pp. 204-11.CrossRefGoogle Scholar
  47. 47.
    [48] Z.L. Liu, D. Qiu, F. Wang, J.A. Taylor, and M.X. Zhang: J. Appl. Cryst., 2015, vol. 48, pp. 890-900.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical EngineeringCentral South UniversityChangshaP.R. China
  2. 2.IMDEA Materials InstituteGetafeSpain
  3. 3.School of Mechanical and Mining EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations