Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 436–450 | Cite as

Evolution of Microstructure and Carbon Distribution During Heat Treatments of a Dual-Phase Steel: Modeling and Atom-Probe Tomography Experiments

  • Dong An
  • Sung-Il Baik
  • Shiyan Pan
  • Mingfang ZhuEmail author
  • Dieter Isheim
  • Bruce W. Krakauer
  • David N. Seidman


The temporal evolution of microstructures and carbon distributions in a Fe-0.323C-1.231Mn-0.849Si (mol pct) dual-phase steel during heat treatments are simulated using a two-dimensional cellular automaton model. The model involves austenite nucleation, phase transformations controlled by ferrite (α)/austenite (γ) interface mobility and the local carbon concentration, and long-range carbon diffusion. It is also coupled with a solute drag model to account for the effect of substitutional elements on the interface migration. The results show that after holding at 800 °C for 300 seconds the transformed γ-volume fraction is lower than the paraequilibrium prediction. During subsequent cooling at 6 °C s−1, the γ → α transformation takes place after a stagnant stage; the carbon concentrations in both the α- and γ-phases increase and become non-uniform. When cooled below 450 °C, the γ-volume fraction is nearly unchanged. A small amount of carbon enriched martensite, transformed from the remaining γ-phase, exists in the room temperature microstructure. The simulated microstructures and carbon concentrations in martensite compare reasonably well with the experimental micrographs and atom-probe tomographic measurements. During tempering at 400 °C, martensite decomposes and the carbon concentration in the α-matrix increases. The simulation results are used to understand the mechanisms of yield strength variations after different heat treatments.



This work was financially supported by A. O. Smith Corporation, USA, NSFC (Grant Nos. 51371051, 51501091), the Jiangsu Key Laboratory for Advanced Metallic Materials (BM2007204), and the Scientific Research Foundation of Graduate School of Southeast University (YBJJ1628). Mr. Dong An is grateful for the financial support from the China Scholarship Council (CSC). APT was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT). The LEAP tomograph at NUCAPT was purchased and upgraded with Grants from the NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781, N00014-1712870) Programs. This work made use of the EPIC Facility of Northwestern University’s NUANCE Center. NUCAPT and NUANCE received support through the MRSEC Program (NSF DMR-1720139) at the Materials Research Center and the SHyNE Resource (NSF ECCS-1542205), NUCAPT from the Initiative for Sustainability and Energy (ISEN), at Northwestern University; NUANCE from the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN.


  1. 1.
    [1] M. Gouné, F. Danoix, J. Ågren, Y. Bréchet, C.R. Hutchinson, M. Militzer, G. Purdy, S. van der Zwaag, and H. Zurob: Mater. Sci. Eng. R-Rep., 2015, vol. 92, pp. 1–38.CrossRefGoogle Scholar
  2. 2.
    [2] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–431.CrossRefGoogle Scholar
  3. 3.
    [3] G. Krauss: Steels: Processing, Structure, and Performance, Second Edition, ASM International, Materials Park, Ohio, 2015.Google Scholar
  4. 4.
    [4] J. Sietsma and S. van der Zwaag: Acta Mater., 2004, vol. 52, pp. 4143–52.CrossRefGoogle Scholar
  5. 5.
    [5] C. Bos and J. Sietsma: Scr. Mater., 2007, vol. 57, pp. 1085–8.CrossRefGoogle Scholar
  6. 6.
    [6] M.G. Mecozzi, C. Bos, and J. Sietsma: Acta Mater., 2015, vol. 88, pp. 302–13.CrossRefGoogle Scholar
  7. 7.
    [7] A. Hultgren: Trans. ASM., 1947, vol. 39, pp. 915–1005.Google Scholar
  8. 8.
    [8] G.R. Purdy and Y.J.M. Brechet: Acta Metall. Mater., 1995, vol. 43, pp. 3763–74.CrossRefGoogle Scholar
  9. 9.
    [9] H. Chen and S. van der Zwaag: Acta Mater., 2014, vol. 72, pp. 1–12.CrossRefGoogle Scholar
  10. 10.
    [10] Z.Q. Liu, G. Miyamoto, Z.G. Yang, and T. Furuhara: Acta Mater., 2013, vol.61, pp. 3120–9.CrossRefGoogle Scholar
  11. 11.
    [11] Y. Kubo, K. Hamada, and A. Urano: Ultramicroscopy, 2013, vol. 135, pp. 64–70.CrossRefGoogle Scholar
  12. 12.
    [12] T.F. Kelly and M.K. Miller: Rev. Sci. Instrum., 2007, vol. 78, p. 031101.CrossRefGoogle Scholar
  13. 13.
    [13] D.N. Seidman: Annu. Rev. Mater. Res., 2007, vol. 37, pp. 127–58.CrossRefGoogle Scholar
  14. 14.
    [14] Y.R. Wen, Y.P. Li, A. Hirata, Y. Zhang, T. Fujita, T. Furuhara, C.T. Liu, A. Chiba, and M.W. Chen: Acta Mater., 2013, vol. 61, pp. 7726–40.CrossRefGoogle Scholar
  15. 15.
    [15] Y. Toji, H. Matsuda, M. Herbig, P.-P. Choi, and D. Raabe: Acta Mater., 2014, vol. 65, pp. 215–28.CrossRefGoogle Scholar
  16. 16.
    [16] M.I. Hartshorne, D. Isheim, D.N. Seidman, and M.L. Taheri: Ultramicroscopy, 2014, vol. 147, pp. 25–32.CrossRefGoogle Scholar
  17. 17.
    [17] S.-I. Baik, L. Ma, Y.-J. Kim, B. Li, M. Liu, D. Isheim, B.I. Yakobson, P.M. Ajayan, and D.N. Seidman: Small, 2015, vol. 11, pp. 5968–74.CrossRefGoogle Scholar
  18. 18.
    [18] J. Rudnizki, B. Böttger, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2516–25.CrossRefGoogle Scholar
  19. 19.
    [19] C. Zheng and D. Raabe: Acta Mater., 2013, vol. 61, pp. 5504–17.CrossRefGoogle Scholar
  20. 20.
    [20] B. Su, Z. Han, and B. Liu: ISIJ Int., 2013, vol. 53, pp. 527–34.CrossRefGoogle Scholar
  21. 21.
    [21] B. Zhu, Y. Zhang, C. Wang, P.X. Liu, W.K. Liang, and J. Li: Metall. Mater. Trans. A, 2014, vol. 45, pp. 3161–71.CrossRefGoogle Scholar
  22. 22.
    [22] G. Zhu, Y. Kang, C. Lu, and S. Li: Steel Res. Int., 2014, vol. 85, pp. 1035–46.CrossRefGoogle Scholar
  23. 23.
    [23] M. Militzer, M.G. Mecozzi, J. Sietsma, and S. van der Zwaag: Acta Mater., 2006, vol. 54, pp. 3961–72.CrossRefGoogle Scholar
  24. 24.
    [24] D.Z. Li, N.M. Xiao, Y.J. Lan, C.W. Zheng, and Y.Y. Li: Acta Mater., 2007, vol. 55, pp. 6234–49.CrossRefGoogle Scholar
  25. 25.
    [25] D.S. Svyetlichnyy and A.I. Mikhalyov: ISIJ Int., 2014, vol. 54, pp. 1386–95.CrossRefGoogle Scholar
  26. 26.
    [26] B. Su, Q. Ma, and Z. Han: Steel Res. Int., 2017, vol. 88, p. 1600490.CrossRefGoogle Scholar
  27. 27.
    [27] C. Bos, M.G. Mecozzi, and J. Sietsma: Comput. Mater. Sci., 2010, vol. 48, pp. 692–9.CrossRefGoogle Scholar
  28. 28.
    [28] B. Zhu and M. Militzer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1073–84.CrossRefGoogle Scholar
  29. 29.
    [29] B. Zhu, H. Chen, and M. Militzer: Comput. Mater. Sci., 2015, vol. 108, pp. 333–41.CrossRefGoogle Scholar
  30. 30.
    [30] H. Chen, B. Zhu, and M. Militzer: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3873–81.CrossRefGoogle Scholar
  31. 31.
    [31] D. An, S. Pan, L. Huang, T. Dai, B. Krakauer, and M. Zhu: ISIJ Int., 2014, vol. 54, pp. 422–9.CrossRefGoogle Scholar
  32. 32.
    Image Tool Program. University of Texas Health Science Center, San Antonio, 2002. Accessed 05 March 2018.
  33. 33.
    [33] G. Krauss: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 40–57.CrossRefGoogle Scholar
  34. 34.
    [34] G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–54.CrossRefGoogle Scholar
  35. 35.
    G.F. Vander Voort: Atlas of Time-Temperature Diagrams for Irons and Steels, ASM International, Materials Park, Ohio, 1991.Google Scholar
  36. 36.
    [36] O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, and D.N. Seidman: Microsc. Microanal., 2000, vol. 6, pp. 437–44.Google Scholar
  37. 37.
    [37] P.H. Chang and A.G. Preban: Acta Metall., 1985, vol. 33, pp. 897–903.CrossRefGoogle Scholar
  38. 38.
    [38] A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. Sect. A, 1949, vol. 62, pp. 49–62.CrossRefGoogle Scholar
  39. 39.
    [39] E.O. Hall: Yield Point Phenomena in Metals and Alloys, Springer US, Boston, MA, 1970.CrossRefGoogle Scholar
  40. 40.
    [40] R. Rementeria, J.D. Poplawsky, M.M. Aranda, W. Guo, J.A. Jimenez, C. Garcia-Mateo, and F.G. Caballero: Acta Mater., 2017, vol. 125, pp. 359–68.CrossRefGoogle Scholar
  41. 41.
    [41] V.I. Savran, S.E. Offerman, and J. Sietsma: Metall. Mater. Trans. A, 2010, vol. 41, pp. 583–91.CrossRefGoogle Scholar
  42. 42.
    [42] G.S. Huppi, D.K. Matlock, and G. Krauss: Scr. Metall., 1980, vol. 14, pp. 1239–43.CrossRefGoogle Scholar
  43. 43.
    [43] G.P. Krielaart and S. Van Der Zwaag: Mater. Sci. Technol., 1998, vol. 14, pp. 10–8.CrossRefGoogle Scholar
  44. 44.
    [44] F. Fazeli and M. Militzer: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1395–405.CrossRefGoogle Scholar
  45. 45.
    [45] J.R. Bradley and H.I. Aaronson: Metall. Trans. A, 1977, vol. 8, pp. 317–22.CrossRefGoogle Scholar
  46. 46.
    [46] C. Capdevila, F.G. Caballero, and C.G. de Andrés: ISIJ Int., 2002, vol. 42, pp. 894–902.CrossRefGoogle Scholar
  47. 47.
    [47] L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19, pp. 2415–26.CrossRefGoogle Scholar
  48. 48.
    [48] T. Waterschoot, K. Verbeken, and B.C. De Cooman: ISIJ Int., 2006, vol. 46, pp. 138–46.CrossRefGoogle Scholar
  49. 49.
    [49] D. Isheim, A.H. Hunter, X.J. Zhang, and D.N. Seidman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 3046–59.CrossRefGoogle Scholar
  50. 50.
    [50] D. Jain, D. Isheim, X.J. Zhang, G. Ghosh, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3642–54.CrossRefGoogle Scholar
  51. 51.
    [51] K. Thompson, P.L. Flaitz, P. Ronsheim, D.J. Larson, and T.F. Kelly: Science, 2007, vol. 317, pp. 1370–74.CrossRefGoogle Scholar
  52. 52.
    [52] A. Kwiatkowski da Silva, G. Leyson, M. Kuzmina, D. Ponge, M. Herbig, S. Sandlöbes, B. Gault, J. Neugebauer, and D. Raabe: Acta Mater., 2017, vol. 124, pp. 305–15.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Dong An
    • 1
  • Sung-Il Baik
    • 2
    • 3
  • Shiyan Pan
    • 1
    • 4
  • Mingfang Zhu
    • 1
    Email author
  • Dieter Isheim
    • 2
    • 3
  • Bruce W. Krakauer
    • 5
  • David N. Seidman
    • 2
    • 3
  1. 1.Jiangsu Key Laboratory for Advanced Metallic Materials, School of Materials Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  3. 3.Center for Atom Probe Tomography (NUCAPT)Northwestern UniversityEvanstonUSA
  4. 4.School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  5. 5.A. O. Smith CorporationMilwaukeeUSA

Personalised recommendations