Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 388–400 | Cite as

The Correlation Between the Distribution/Size of Carbides and Electrochemical Behavior of 17Cr-1Ni Ferritic-Martensitic Stainless Steel

  • Li Wang
  • Chaofang DongEmail author
  • Qiang Yu
  • Cheng Man
  • Yabo Hu
  • Zongbiao Dai
  • Xiaogang Li
Article
  • 114 Downloads

Abstract

The correlation between the distribution/size of carbides and corrosion resistance of 17Cr-1Ni ferritic-martensitic stainless steel after different heat treatment temperatures was investigated by transmission electron microscope, electrochemical tests, and corrosion morphology observations. The results showed that the size of the precipitated phase decreased and corrosion resistance increased with an increase in the annealing temperature. When the tempering temperature was low (290 °C), carbides precipitated mainly at the phase boundaries due to a low degree of atomic matching and higher grain boundary energy. In this case, the polarization curve had a passivation interval and the pits were mainly initiated at the phase boundary. When the tempering temperature was higher than 400 °C, the carbides gradually precipitated in the martensite laths because the accelerated diffusion of Cr healed the Cr depletion zone at phase boundary. This outcome resulted in a polarization curve that had no passivation range and uniform corrosion occurred in martensitic region.

Notes

Acknowledgments

This work was supported by the National Key Research and Development Program of China (No. 2017YFB 0702300), National Natural Science Foundation of China (No. 51671029), and the Fundamental Research Funds for the Central Universities (No. FRF-TP-17-002B).

References

  1. 1.
    [1] Y. Kayali and B. Anaturk: Mater. Design, 2013, vol. 46, pp. 776-783.CrossRefGoogle Scholar
  2. 2.
    2.A. Bag, K.K. Ray and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1193–1202.CrossRefGoogle Scholar
  3. 3.
    [3]M. Bellavoine, M. Dumont, J. Drillet, V. Hébert and P. Maugis: Metall. Mater. Trans. A., 2018, vol. 49, pp. 2865-2875.CrossRefGoogle Scholar
  4. 4.
    [4] S. Gündüz: Mater. Lett.,2009, vol. 63, pp. 2381-2383.CrossRefGoogle Scholar
  5. 5.
    [5] A. Neville, T. Hodgkiess:Corros. Sci., 1996,vol. 38, pp. 927-956.CrossRefGoogle Scholar
  6. 6.
    [6] S. Qu, X. Pang, Y. Wang and K. Gao:Corros. Sci., 2013,vol. 75, pp. 67-77.CrossRefGoogle Scholar
  7. 7.
    [7] F.U. Yan: Acta. Metall. Sin., 2005, vol.41, pp. 302-306.Google Scholar
  8. 8.
    [8]Y.Z. Shen, Z.X. Shang, Z.Q. Xu, W.W. Liu, X.Huang and H.Liu: Mater.Charact.,2016,vol.119,pp.13-23.CrossRefGoogle Scholar
  9. 9.
    [9] H.W. Hayden and S. Fwreen: Metall. Trans.,1970,vol.1,pp.1955-1959.CrossRefGoogle Scholar
  10. 10.
    [10] K.M. Adhe, V. Kain, K. Madangopal and HS Gadiyar: J. Mater. Eng. Perform., 1996, vol. 5, pp. 500-506.CrossRefGoogle Scholar
  11. 11.
    [11] G.C. Palit, H.S. Gadiyar and V.C. Kain: Corros.-HoustonTx-.,1993, vol. 49,pp. 977-991.CrossRefGoogle Scholar
  12. 12.
    [12] V. Kain, G.C. Palit, S.S. Chouthai, H.S. Gadiyar: J. Electrochem. Soc., 1989 vol. 38, pp. 50-54.Google Scholar
  13. 13.
    [13] K. Chandra, V. Kain and R. Tewari: Corros. Sci., 2013,vol. 67, pp. 118-129.CrossRefGoogle Scholar
  14. 14.
    V. Vigna, S. Ringeval, S. Thiébaut, K. Tabalaiev, C. Dessolin, O. Heintz, Heintzac, F. Herbstac, and R. Chassagnonac: Corros. Sci., 2014, vol. 85, pp. 42–51.CrossRefGoogle Scholar
  15. 15.
    V. Vigna, S. Ringeval, S. Thiébaut, K. Tabalaiev, C. Dessolin, O. Heintz, Heintzac, F. Herbstac, and R. Chassagnonac: Corros. Sci., 2014, vol. 85, pp. 42–51.Google Scholar
  16. 16.
    16.S.K. Bonagani, V. Bathula, V. Kain: Corros. Sci., 2018, vol. 131, pp. 340–54.CrossRefGoogle Scholar
  17. 17.
    [17] B. Tang, L. Jiang, R. Hu and Q. Li: Mater. Charact., 2013, vol. 78, pp. 144-150.CrossRefGoogle Scholar
  18. 18.
    [18]R. Jones, V. Randle and G. Owen: Metall. Mater. Trans. A., 2008, vol. 496, pp. 256-261.Google Scholar
  19. 19.
    [19] T.N. Prasanthi, C. Sudha, V.T. Paul, N.S. Bharasi, S. Saroja and M. Vijayalakshmi: Metall. Mater. Trans. A., 2014, vol. 45, pp. 4220-4234.CrossRefGoogle Scholar
  20. 20.
    20.S. Pahlavan, S. Moazen, I. Taji, K. Saffar, M. Hamrah, M.H. Moayed and SM Beidokhti: Corros. Sci., 2016, vol. 112, pp. 233-240.CrossRefGoogle Scholar
  21. 21.
    21.P.P. Sarkar, P. Kumar, MK Manna and P.C. Chakraborti: Mater. Lett., 2005, vol. 59, pp. 2488-491.CrossRefGoogle Scholar
  22. 22.
    22.Y. Zhao, W. Zhang, Z. Liu and G. Wang: Mater. Sci. Eng. A, 2017, vol. 702, pp. 279-88.CrossRefGoogle Scholar
  23. 23.
    [23] T.H. Lee, Y.J. Lee, S.H. Joo, H.H. Nersisyan, K.T. Park and J.H. Lee: Metall. Mater. Trans. A., 2015, vol. 46, pp. 4020-4226.CrossRefGoogle Scholar
  24. 24.
    24.D.C. Kong, A.N. Xu, C.F. Dong, F.X. Mao, K. Xiao, X.G. Li and DD Macdonaldb: Corros. Sci., 2017, vol. 116, pp. 34-43.CrossRefGoogle Scholar
  25. 25.
    [25] X. Wang, Y. Li, H. Li, S. Lin, Y. Ren and X. Wang: J. Mater. Process. Tech., 2018, vol. 252, pp. 618-627.CrossRefGoogle Scholar
  26. 26.
    26.L.D. Barlow and M.D. Toit: J. Mater. Eng. Perform., 2012, vol. 21, pp. 1327-1336.CrossRefGoogle Scholar
  27. 27.
    [27] Z. Xu, Z. Ding, L. Dong and B. Liang: Metall. Mater. Trans. A., 2016, vol. 47, pp. 1-7.Google Scholar
  28. 28.
    28.S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang and X.Y. Ge: Metall. Mater. Trans. A., 2015, vol. 46, pp. 6090-6102.CrossRefGoogle Scholar
  29. 29.
    [29] S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang, X. Liu and X. Ge: Electrochim. Acta, 2015, vol. 165, pp. 45-55.CrossRefGoogle Scholar
  30. 30.
    30.Q. Yu, C.F. Dong, Y.H. Fang, K. Xiao, C.Y. Guo, G. He and X.G. Li: J. IronSteel Res. Int., 2016, vol. 23, pp. 1061-1070.Google Scholar
  31. 31.
    [31] H. Luo, C.F. Dong, X.G. Li and K. Xiao: Electrochim. Acta, 2012, vol. 64, pp. 211-220.CrossRefGoogle Scholar
  32. 32.
    [32] Y.S. Choi, J.G. Kim, Y.S. Park and J.Y. Park: Mater. Lett.,2007, vol. 61, pp. 244-247.CrossRefGoogle Scholar
  33. 33.
    [33] C. Man, C.F. Dong, Z.Y. Cui, K. Xiao, Q Yu and X.G. Li: Appl. Surf. Sci., 2018, vol. 427, pp. 763-773.CrossRefGoogle Scholar
  34. 34.
    [34] J. Jayaraj, K.R. Ravi, C. Mallika and U.K. Mudali: Metall. Mater. Trans. A., 2016, vol. 47, pp. 1-11.Google Scholar
  35. 35.
    35.R.C. Ming, Y. Che, X. Dong and X. Chao: J. Mater. Sci. Technol., 2012, vol. 28, pp. 1059–66.CrossRefGoogle Scholar
  36. 36.
    J.M. Pardal, M.R.D. Silva, I.N. Bastos, MCSD Macado and SSM Tavares: Br. Corros. J., 2016, vol. 51, pp. 337–41.Google Scholar
  37. 37.
    37.C.T.Liu and J.K. Wu: Corros. Sci., 2007, vol. 49, pp. 2198-2209.CrossRefGoogle Scholar
  38. 38.
    38.S. Ningshen, M. Sakairi, K. Suzuki and S Ukai: Appl. Surf. Sci., 2013, vol. 274, pp. 345-55.CrossRefGoogle Scholar
  39. 39.
    [39] Y. Fu, X. Wu, E.H. Han, W. Ke, K. Yang and Z. Jiang: Electrochim. Acta, 2009, vol. 54, pp. 1618-1629.CrossRefGoogle Scholar
  40. 40.
    [40] X.P. Ma, L.J. Wang, B. Qin, C.M. Liu and S.V. Subramanian: Mater. Design, 2012, vol. 34, pp. 74-81.CrossRefGoogle Scholar
  41. 41.
    [41] K. Asami, K. Hashimoto and S. Shimodaira: Corros. Sci., 1977,vol. 17, pp. 713-723.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Li Wang
    • 1
  • Chaofang Dong
    • 1
    Email author
  • Qiang Yu
    • 2
  • Cheng Man
    • 1
  • Yabo Hu
    • 1
  • Zongbiao Dai
    • 3
  • Xiaogang Li
    • 1
  1. 1.Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE)University of Science and Technology BeijingBeijingP.R. China
  2. 2.Hunan Valin Lianyuan Iron and Steel Co. LtdLoudiChina
  3. 3.Key Laboratory for Advanced Materials of Ministry of Education, School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations