Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 426–435 | Cite as

ECCI Characterization of Dislocation Structures at a Non-propagating Fatigue Crack Tip: Toward Understanding the Effects of Mn-C and Cr-N Couples on Crack Growth Resistance

  • Kishan HabibEmail author
  • Motomichi KoyamaEmail author
  • Toshihiro Tsuchiyama
  • Hiroshi Noguchi


We attempted to clarify the underlying mechanisms of the enhanced small-fatigue-crack resistance of Fe-Mn-C twinning-induced plasticity (TWIP) steel and high-nitrogen austenitic steel. To this end, we performed electron channeling contrast imaging near the tips of non-propagating fatigue cracks in Fe-18Cr-14Ni steel without a significant amount of interstitials, Fe-23Mn-0.5C TWIP steel, and Fe-25Cr-1N austenitic steel. The fatigue crack non-propagation limits of the TWIP steel and high-nitrogen steel were higher than that of the steel without a significant amount of interstitials; the higher limits of the TWIP steel and high-nitrogen steel are attributed to the Mn-C and Cr-N interactions, respectively. The enhanced small-fatigue-crack resistance of the Fe-23Mn-0.5C steel is attributed to local hardening at the crack tip caused by an increase in the dislocation density via dynamic strain aging. The enhanced dislocation planarity of the Fe-25Cr-1N steel, which is a result of the Cr-N interaction, is a significant factor that influences (i.e., increases) the crack resistance. The enhanced dislocation planarity results in dislocation pile-up stress at the crack tip, thereby preventing dislocation emission from the crack tip.



This study was financially supported by JSPS KAKENHI (JP16H06365).

Supplementary material

11661_2018_4972_MOESM1_ESM.pdf (727 kb)
Supplementary material 1 (PDF 726 kb)


  1. 1.
    J.R. Davis: Stainless Steels, ASM International, Materials Park, 1994.Google Scholar
  2. 2.
    L. Gardner: Prog. Struct. Eng. Mater., 2005, vol. 7, pp. 45–55.CrossRefGoogle Scholar
  3. 3.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: Science, 2014, vol. 345, pp. 1153–8.CrossRefGoogle Scholar
  4. 4.
    O. Grässel, L. Krüger, G. Frommeyer, and L. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.CrossRefGoogle Scholar
  5. 5.
    S. Hamada, T. Kinoshita, K. Morishige, K. Hayashi, T. Ishina, and H. Noguchi: Int. J. Fatigue, 2013, vol. 56, pp. 86–94.CrossRefGoogle Scholar
  6. 6.
    B. Li, C. Jiang, X. Han, and Y. Li: Int. J. Fatigue, 2015, vol. 78, pp. 1–10.CrossRefGoogle Scholar
  7. 7.
    G. Bertolino, V. Doquet, and M. Sauzay: Int. J. Fatigue, 2005, vol. 27, pp. 471–80.CrossRefGoogle Scholar
  8. 8.
    E. Kerscher, K.-H. Lang, O. Vöhringer, and D. Löhe: Int. J. Fatigue, 2008, vol. 30, pp. 1838–42.CrossRefGoogle Scholar
  9. 9.
    Z.-J. Xi, M. Koyama, Y. Yoshida, N. Yoshimura, K. Ushioda, and H. Noguchi: Philos. Mag. Lett., 2015, vol. 95, pp. 384–91.CrossRefGoogle Scholar
  10. 10.
    J. Dougherty, T. Srivatsan, and J. Padovan: Eng. Fract. Mech., 1997, vol. 56, pp. 167–87.CrossRefGoogle Scholar
  11. 11.
    D. Wilson and J. Tromans: Acta Metall., 1970, vol. 18, pp. 1197–208.CrossRefGoogle Scholar
  12. 12.
    G. Oates and D. Wilson: Acta Metall., 1964, vol. 12, pp. 21–33.CrossRefGoogle Scholar
  13. 13.
    R. Ritchie and S. Suresh: Metall. Trans. A, 1982, vol. 13, pp. 937–40.CrossRefGoogle Scholar
  14. 14.
    R. Pippan: Acta Metall. Mater., 1991, vol. 39, pp. 255–62.CrossRefGoogle Scholar
  15. 15.
    J. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159–169.CrossRefGoogle Scholar
  16. 16.
    H. Berns: ISIJ Int., 1996, vol. 36, pp. 909–14.CrossRefGoogle Scholar
  17. 17.
    H. Baba, T. Kodama, and Y. Katada: Corros. Sci., 2002, vol. 44, pp. 2393–407.CrossRefGoogle Scholar
  18. 18.
    I. Karaman, H. Sehitoglu, H. Maier, and Y. Chumlyakov: Acta Mater., 2001, vol. 49, pp. 3919–33.CrossRefGoogle Scholar
  19. 19.
    D.R. Steinmetz, T. Jäpel, B. Wietbrock, P. Eisenlohr, I. Gutierrez-Urrutia, A. Saeed-Akbari, T. Hickel, F. Roters, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 494–510.CrossRefGoogle Scholar
  20. 20.
    M. Koyama, T. Sawaguchi, T. Lee, C.S. Lee, and K. Tsuzaki: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7310–16.CrossRefGoogle Scholar
  21. 21.
    D. Fabrègue, C. Landron, O. Bouaziz, and E. Maire: Mater. Sci. Eng. A, 2013, vol. 579, pp. 92–8.CrossRefGoogle Scholar
  22. 22.
    O. Bouaziz, S. Allain, C. Scott, P. Cugy, and D. Barbier: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 141–68.CrossRefGoogle Scholar
  23. 23.
    Y.-K. Lee: Scr. Mater., 2012, vol. 66, pp. 1002–6.CrossRefGoogle Scholar
  24. 24.
    Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12, pp. 749–59.CrossRefGoogle Scholar
  25. 25.
    S.-J. Lee, J. Kim, S.N. Kane, and B.C. De Cooman: Acta Mater., 2011, vol. 59, pp. 6809–19.CrossRefGoogle Scholar
  26. 26.
    M. Koyama, T. Sawaguchi, and K. Tsuzaki: ISIJ Int., 2015, vol. 55, pp. 1754–61.CrossRefGoogle Scholar
  27. 27.
    Y. Terazawa, T. Ando, T. Tsuchiyama, and S. Takaki: Steel Res. Int., 2009, vol. 80, pp. 473–6.Google Scholar
  28. 28.
    J.-B. Vogt: J. Mater. Process. Technol., 2001, vol. 117, pp. 364–9.CrossRefGoogle Scholar
  29. 29.
    Q. Dai, Z. Yuan, X. Chen, and K. Chen: Mater. Sci. Eng. A, 2009, vol. 517, pp. 257–60.CrossRefGoogle Scholar
  30. 30.
    T. Takemoto, K. Mukai, and K. Hoshino: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 337–44.CrossRefGoogle Scholar
  31. 31.
    C. Shao, F. Shi, and X. Li: Mater. Sci. Eng. A, 2016, vol. 667, pp. 208–16.CrossRefGoogle Scholar
  32. 32.
    A.S. Hamada, L.P. Karjalainen, and J. Puustinen: Mater. Sci. Eng. A, 2009, vol. 517, pp. 68–77.CrossRefGoogle Scholar
  33. 33.
    P. Ma, L. Qian, J. Meng, S. Liu, and F. Zhang: Mater. Sci. Eng. A, 2014, vol. 605, pp. 160–6.CrossRefGoogle Scholar
  34. 34.
    K. Habib, M. Koyama, and H. Noguchi: Int. J. Fatigue, 2017, vol. 99, pp. 1–12.CrossRefGoogle Scholar
  35. 35.
    K. Habib, M. Koyama, T. Tsuchiyama, and H. Noguchi: Int. J. Fatigue, 2017, vol. 104, pp. 158–70.CrossRefGoogle Scholar
  36. 36.
    M. Koyama, Y. Yamamura, R. Che, T. Sawaguchi, K. Tsuzaki, and H. Noguchi: Int. J. Fatigue, 2017, vol. 94, pp. 1–5.CrossRefGoogle Scholar
  37. 37.
    K. Habib, M. Koyama, T. Tsuchiyama, and H. Noguchi: Mater. Res. Lett., 2018, vol. 6, pp. 61–6.CrossRefGoogle Scholar
  38. 38.
    J. Ahmed, A. Wilkinson, and S. Roberts: Philos. Mag. Lett., 1997, vol. 76, pp. 237–46.CrossRefGoogle Scholar
  39. 39.
    M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama, and D. Raabe: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 4634–46.CrossRefGoogle Scholar
  40. 40.
    I. Gutierrez-Urrutia and D. Raabe: Scr. Mater., 2012, vol. 66, pp. 343–6.CrossRefGoogle Scholar
  41. 41.
    T. Onomoto, Y. Terazawa, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2009, vol. 49, pp. 1246–52.CrossRefGoogle Scholar
  42. 42.
    M. Ojima, Y. Adachi, Y. Tomota, Y. Katada, Y. Kaneko, K. Kuroda, and H. Saka: Steel Res. Int., 2009, vol. 80, pp. 477–81.Google Scholar
  43. 43.
    H.-A. Nishikawa, Y. Oda, Y. Takahashi, and H. Noguchi: J. Solid Mech. Mater. Eng., 2011, vol. 5, pp. 179–90.CrossRefGoogle Scholar
  44. 44.
    M. Koyama, Y. Onishi, and H. Noguchi: Int. J. Fract., 2017, vol. 206, pp. 123–30.CrossRefGoogle Scholar
  45. 45.
    D. Barbier, N. Gey, N. Bozzolo, S. Allain, and M. Humbert: J. Microsc., 2009, vol. 235, pp. 67–78.CrossRefGoogle Scholar
  46. 46.
    J.-E. Jin and Y.-K. Lee: Mater. Sci. Eng. A, 2009, vol. 527, pp. 157–61.CrossRefGoogle Scholar
  47. 47.
    M. Koyama, T. Sawaguchi, and K. Tsuzaki: ISIJ Int., 2013, vol. 53, pp. 323–9.CrossRefGoogle Scholar
  48. 48.
    R.P. Reed: JOM, 1989, vol. 41, pp. 16–21.CrossRefGoogle Scholar
  49. 49.
    D. Canadinc, C. Efstathiou, and H. Sehitoglu: Scr. Mater., 2008, vol. 59, pp. 1103–6.CrossRefGoogle Scholar
  50. 50.
    S. Allain, P. Cugy, C. Scott, J.-P. Chateau, A. Rusinek, and A. Deschamps: Int. J. Mater. Res., 2008, vol. 99, pp. 734–8.CrossRefGoogle Scholar
  51. 51.
    M. Koyama, T. Sawaguchi, and K. Tsuzaki: Philos. Mag. Lett., 2012, vol. 92, pp. 145–52.CrossRefGoogle Scholar
  52. 52.
    M. Koyama, T. Sawaguchi, and K. Tsuzaki: Philos. Mag., 2012, vol. 92, pp. 3051–63.CrossRefGoogle Scholar
  53. 53.
    L. Chen, H.-S. Kim, and S.-K. Kim: ISIJ Int., 2007, vol. 47, pp. 1804–12.CrossRefGoogle Scholar
  54. 54.
    M. Koyama, E. Akiyama, and K. Tsuzaki: ISIJ Int., 2013, vol. 53, pp. 1089–96.CrossRefGoogle Scholar
  55. 55.
    O. Bouaziz, S. Allain, and C. Scott: Scr. Mater., 2008, vol. 58, pp. 484–7.CrossRefGoogle Scholar
  56. 56.
    Y. Dastur and W. Leslie: Metall. Mater. Trans. A, 1981, vol. 12, pp. 749–59.CrossRefGoogle Scholar
  57. 57.
    B. Hutchinson and N. Ridley: Scr. Mater., 2006, vol. 55, pp. 299–302.CrossRefGoogle Scholar
  58. 58.
    R. Schramm and R. Reed: Metall. Mater. Trans. A, 1975, vol. 6, pp. 1345–51.CrossRefGoogle Scholar
  59. 59.
    R. Stoltz and J. Vander-Sande: Metall. Trans. A, 1980, vol. 11, pp. 1033–37.CrossRefGoogle Scholar
  60. 60.
    V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177–83.CrossRefGoogle Scholar
  61. 61.
    Y. Tomota: J. Jpn. Soc. Heat Treat., 1996, vol. 36, pp. 218–23.Google Scholar
  62. 62.
    J. Sassen, A. Garratt-Reed, and W. Owen: High Nitrogen Steels HNS, 1988, vol. 88, pp. 159–62.Google Scholar
  63. 63.
    M. Ojima, Y. Adachi, Y. Tomota, K. Ikeda, T. Kamiyama, and Y. Katada: Mater. Sci. Eng. A, 2009, vol. 527, pp. 16–24.CrossRefGoogle Scholar
  64. 64.
    M. Grujicic, J.-O. Nilsson, W. Owen, and T. Thorvaldsson: High Nitrogen Steels HNS, 1988, vol. 88, pp. 151–8.Google Scholar
  65. 65.
    A. Hunsche and P. Neumann: Acta Metall., 1986, vol. 34, pp. 207–17.CrossRefGoogle Scholar
  66. 66.
    M.R. Lin, M.E. Fine, and T. Mura: Acta Metall., 1986, vol. 34, pp. 619–28.CrossRefGoogle Scholar
  67. 67.
    W. Elber: in Damage Tolerance in Aircraft Structures, ASTM International, Materials Park, 1971.Google Scholar
  68. 68.
    E. Wolf: Eng. Fract. Mech., 1970, vol. 2, pp. 37–44.CrossRefGoogle Scholar
  69. 69.
    S. Kubota, Y. Xia, and Y. Tomota: ISIJ Int., 1998, vol. 38, pp. 474–81.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKyushu UniversityFukuokaJapan
  2. 2.Department of Material Science and EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations