Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 300–310 | Cite as

A Full View of the Interfacial Behavior Between the Liquid Al and Solid Ni by Synchrotron Radiation

  • Zongye Ding
  • Qiaodan Hu
  • Wenquan Lu
  • Xiaowei Xu
  • Xuan Ge
  • Sheng Cao
  • Tianxing Yang
  • Honghao Ge
  • Mingxu Xia
  • Jianguo Li


Synchrotron X-ray radiography was utilized to in situ study the Ni dissolution during holding and growth behavior of intermetallic compounds (IMCs) during solidification at the liquid Al/solid Ni interface, and synchrotron tomography was used to reconstruct the diversified Al3Ni phases. The dissolution and IMC growth was quantitatively analyzed. During holding, the solid Ni dissolved heterogeneously into liquid Al, and the quantification of Ni concentration was obtained from intensity values. The layered Al3Ni2 formed at the interface during solidification, following by columnar and needle-like Al3Ni. The growth of Al3Ni2 layer followed a parabolic law, being controlled by bulk diffusion mechanism. The peritectic and proeutectic Al3Ni grew along the length obviously at the early stage and coarsened in the late stage. The proeutectic Al3Ni phase had a stronger [001] orientation than peritectic Al3Ni phase.



This work is supported by the National Key Research and Development Program (2017YFA0403800), National Natural Science Foundation of China (51374144, 51774201), Shanghai Municipal Natural Science Foundation (13ZR1420600), and Shanghai Rising-Star Program (14QA1402300). The support of synchrotron radiation phase-contrast imaging by the BL13W1 beam line of Shanghai Synchrotron Radiation Facility (SSRF), China, is gratefully acknowledged.


  1. 1.
    W. Wołczyński, E. Guzik, F. Janczak-Rusch, D. Kopyciński, J. Golczewski, H. M. Lee, and J. Kloch: Mater. Charact., 2006, vol. 56, pp. 274-280.CrossRefGoogle Scholar
  2. 2.
    J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, and Z. A. Munir: Acta Mater., 2008, vol. 56, pp. 1840-1848.CrossRefGoogle Scholar
  3. 3.
    S. Tumminello, and S. Sommadossi: Defect Diffus. Forum, 2012, vol. 323–325, pp. 465–470.Google Scholar
  4. 4.
    C.J. Li, Z.J. Yuan, R. Guo, W.D. Xuan, Z.M. Ren, Y.B. Zhong, X. Li, H. Wang, and Q.L. Wang: J. Alloy. Compd., 2015, vol. 641, pp. 7-13.CrossRefGoogle Scholar
  5. 5.
    K. Bouché, F. Barbier, and A. Coulet: Z. Metallkd., 1997, vol. 88, pp. 446-451.Google Scholar
  6. 6.
    G.A. Lopez, S. Sommadossi, W. Gust, and E.J. Mittemeijer: Interface Sci., 2002, vol. 10, pp. 13-19.CrossRefGoogle Scholar
  7. 7.
    J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, and Z. A. Munir: Acta Mater., 2007, vol. 55, pp. 5592-5600.CrossRefGoogle Scholar
  8. 8.
    V.N. Eremenko, Y.V. Natanzon, and V.P. Titov: Mater. Sci., 1978, vol. 14, pp. 579-584.CrossRefGoogle Scholar
  9. 9.
    Z.Y. Ding, Q.D. Hu, W.Q. Lu, X. Ge, S. Cao, S.Y. Sun, T.X. Yang, M.X. Xia, and J.G. Li: Mater. Charact., 2018, vol. 136, pp. 157-164.CrossRefGoogle Scholar
  10. 10.
    T.M. Wang, F. Cao, P. Zhou, H.J. Kang, Z.N. Chen, Y.N. Fu, T.Q. Xiao, W.X. Huang, and Q.X. Yuan: J. Alloy. Compd., 2014, vol. 616, pp. 550-555.CrossRefGoogle Scholar
  11. 11.
    Z.Y. Ding, Q.D. Hu, W.Q. Lu, S.Y. Sun, M.X. Xia, and J.G. Li: Scr. Mater., 2017, vol. 130, pp. 214-218.CrossRefGoogle Scholar
  12. 12.
    E.Y. Guo, A.B. Phillion, B. Cai, S.S. Shuai, D. Kazantsev, T. Jing, and P.D. Lee: Acta Mater., 2017, vol. 123, pp. 373-382.CrossRefGoogle Scholar
  13. 13.
    B. Cai, J. Wang, A. Kao, K. Pericleous, A.B. Phillion, R.C. Atwood, and P.D. Lee: Acta Mater., 2016, vol. 117, pp. 160-169.CrossRefGoogle Scholar
  14. 14.
    R.C. Chen, D. Dreossi, L. Mancini, R. Menk, L. Rigon, T.Q. Xiao, and R. Longo: J. Synchrotron Rad., 2012, vol. 19, pp. 836-845.CrossRefGoogle Scholar
  15. 15.
    Y.L. Li, W. Liu, P. He, J.C. Feng, and D.P. Sekulic: J. Mater. Sci., 2013, vol. 48, pp. 5247-5252.CrossRefGoogle Scholar
  16. 16.
    X.P. Zhang, and Y.W. Shi: Scr. Mater., 2004, vol. 50, pp. 1003-1006.CrossRefGoogle Scholar
  17. 17.
    H. Okamoto: J. Phase Equilibria, 1993, vol. 14, pp. 652-653.CrossRefGoogle Scholar
  18. 18.
    T.M. Wang, P. Zhou, F. Cao, H.J. Kang, Z.N. Chen, Y.N. Fu, T.Q. Xiao, W.X. Huang, and Q.X. Yuan: Intermetallics, 2015, vol. 58, pp. 84-90.CrossRefGoogle Scholar
  19. 19.
    W.U. Mirihanage, K.V. Falch, I. Snigireva, A. Snigirev, Y.J. Li, L. Arnberg, and R.H. Mathiesen: Acta Mater., 2014, vol. 81, pp. 241-247.CrossRefGoogle Scholar
  20. 20.
    A. Griesche, B. Zhang, E. Solórzano, and F. Garcia-Moreno: Rev. Sci. Instrum., 2010, vol. 81, p. 056104.CrossRefGoogle Scholar
  21. 21.
    L.J. Zhang, Y. Du, I. Steinbach, Q. Chen, and B.Y. Huang: Acta Mater., 2010, vol. 58, pp. 3664-3675.CrossRefGoogle Scholar
  22. 22.
    M. Kajihara: Acta Mater., 2004, vol. 52, pp. 1193-1200.CrossRefGoogle Scholar
  23. 23.
    W. Kurz, and D.J. Fisher: Fundamentals of Solidification, fourth ed. Trans. Tech., Switzerland, 1998.Google Scholar
  24. 24.
    D.M. Liu: Ph.D. Thesis, Harbin Institute of Technology, 2012.Google Scholar
  25. 25.
    S. Ge, M. Celikin, M. Isac, and R. Guthrie: ISIJ Int., 2014, vol. 54, pp. 294-303.CrossRefGoogle Scholar
  26. 26.
    C. Kittel: Introduction to Solid State Physics, fifth ed. John Wiley & Sons, New York, 1976.Google Scholar
  27. 27.
    X. Li, Y. Fautrelle, A. Gagnoud, R. Moreau, D.F. Du, Z.M. Ren, and X.G. Lu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1180-1197.CrossRefGoogle Scholar
  28. 28.
    X. Li, Y. Fautrelle, Z.M. Ren, Y.D. Zhang, and C. Esling: Acta Mater., 2010, vol. 58, pp. 2430-2441.CrossRefGoogle Scholar
  29. 29.
    W.K. Burton, N. Cabrera, and F.C. Frank: Nature, 1949, vol. 163, p. 398.CrossRefGoogle Scholar
  30. 30.
    C. Li: Principles of Metallography, Harbin Institute of Technology Press, Harbin, 1988.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Zongye Ding
    • 1
  • Qiaodan Hu
    • 1
  • Wenquan Lu
    • 1
  • Xiaowei Xu
    • 1
  • Xuan Ge
    • 1
  • Sheng Cao
    • 2
  • Tianxing Yang
    • 1
  • Honghao Ge
    • 1
  • Mingxu Xia
    • 1
  • Jianguo Li
    • 1
  1. 1.Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  2. 2.Monash Centre for Additive Manufacturing (MCAM)Monash UniversityClaytonAustralia

Personalised recommendations