Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 151–160 | Cite as

Determination of Yield Stress in a Duplex Steel with α + γ Lamellar Structure

  • Yoon-Uk Heo
  • Joo-Hee Kang
  • Nam Hoe Heo
  • Sung-Joon Kim
Article
  • 116 Downloads

Abstract

Yield stress σy is evaluated in a duplex steel with α + γ lamellar structure by calculating the stress for the propagation of pile-up dislocations in one phase into another phase. Effective grain size of a lamella is determined to calculate the contribution of each boundary of a lamella to dislocation pile-up. Comparison of stresses required to drive α-to-γ and γ-to-α propagations of pile-up dislocations suggests that α + γ lamellar structure yields by propagation of pile-up dislocations in α lamella to γ lamella. σy of α + γ lamellar structure is calculated as the sum of friction stress σoα of α and the stress component Δσγ for yielding of γ lamella at the effective grain size dα,eff of α lamella. The calculated results explain better to the experimental σy than do results calculated using rule of mixture.

Notes

Acknowledgments

This work was partially supported by the Technology Development Project (Project numbers: 4.0014548) from POSCO. J.-H. Kang was supported by the Fundamental Research Program of the Korea Institute of Materials Science (PNK5570).

References

  1. 1.
    S. Gao, A. Shibata, M. Chen, N. Park and N. Tsuji: Mater. Trans., 2014, vol. 55, pp. 69-72.CrossRefGoogle Scholar
  2. 2.
    W. C. Leslie: The physical metallurgy of steels, 1st Ed., Hemisphere publishing corporation, New York, 1981, pp. 2-67.Google Scholar
  3. 3.
    G. Dini, A. Najafizadeh, R. Ueji, S. M. Monir-Vaghefi: Mater. Des., 2010, vol. 31, pp. 3395-402.CrossRefGoogle Scholar
  4. 4.
    Z. Shen, R. H. Wagoner, and W. A. T. Clark: Scripta Metall., 1986, vol. 20, pp. 921-6.CrossRefGoogle Scholar
  5. 5.
    S. Takaki, D. Akama, N. Nakada, T. Tsuchiyama: Mater. Trans., 2014, vol. 55, pp. 28-34.CrossRefGoogle Scholar
  6. 6.
    M. Rashid: Annu. Rev. Mater. Sci., 1981, vol. 11, pp. 245–66.CrossRefGoogle Scholar
  7. 7.
    P. Movahed, S. Kolahgar, S. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.CrossRefGoogle Scholar
  8. 8.
    Z.H. Jiang, Z.Z. Guan, and J.S. Lian: Mater. Sci. Eng. A, 1995, vol. 190, pp. 55–64.CrossRefGoogle Scholar
  9. 9.
    R. Davies: Metall. Trans. A, 1978, vol. 9, pp. 671–9.CrossRefGoogle Scholar
  10. 10.
    L.F. Ramos, D.K. Matlock, and G. Krauss: Metall. Mater. Trans. A, 1979, vol. 10, pp. 259–61.CrossRefGoogle Scholar
  11. 11.
    U. Liedl, S. Traint, and E. Werner: Comput. Mater. Sci., 2002, vol. 25, pp. 122–28.CrossRefGoogle Scholar
  12. 12.
    N. Balliger and T. Gladman: Metall. Sci., 1981, vol. 15, pp. 95–108.CrossRefGoogle Scholar
  13. 13.
    G. Tither and M. Lavite: J. Metall., 1975, vol. 27, pp. 15–23.Google Scholar
  14. 14.
    N. Hirota, F. Yin, T. Azuma, and T. Inoue: Sci. Techn. Adv. Mater., 2010, vol. 11, pp. 025004.CrossRefGoogle Scholar
  15. 15.
    B. Cullity and S. Stock: Elements of X–ray diffraction, 3rd ed., Prentice-Hall, New Jersey, 2001, pp. 363-84.Google Scholar
  16. 16.
    Y. Guo, Z. Li, C. Yao, K. Zhang, F. Lu, K. Feng, J. Huang, M. Wang, and Y. Wu: Mater. Des., 2014, vol. 63, pp. 100–8.CrossRefGoogle Scholar
  17. 17.
    D. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.Google Scholar
  18. 18.
    R. F. Egerton: Electron energy-loss spectroscopy in the electron microscope, Second ed. Plenum press, New York, 1996.CrossRefGoogle Scholar
  19. 19.
    H. M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65-71.CrossRefGoogle Scholar
  20. 20.
    Y.-U. Heo, D.-W. Suh, and H.-C. Lee: Acta Mater., 2014, vol. 77, pp. 236–47.CrossRefGoogle Scholar
  21. 21.
    L. E. Murr: Electron optical applications in materials science, McGraw-Hill, New York, 1970.Google Scholar
  22. 22.
    J.R. Yang and H.K.D.H. Bhadeshia: Weld. Res. Suppl., 1990, vol. 69, pp. 305s-7s.Google Scholar
  23. 23.
    A Saeed–Akbari (2011) Mechanism Maps, Mechanical Properties, and Flow Behavior in High-Manganese TRIP/TWIP and TWIP Steels. Shaker Verlag, Aachen.Google Scholar
  24. 24.
    A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1688-704.CrossRefGoogle Scholar
  25. 25.
    A. Saeed-Akbari, A. Schwedt, and W. Bleck: Scripta Mater., 2012, vol. 66, pp. 1024-29.CrossRefGoogle Scholar
  26. 26.
    Y.-U. Heo, D. H. Kim, N.H. Heo, C. W. Hong, and S.-J. Kim: Met. Mater. Trans. A, 2016, vol. 47A, pp. 6004-16.CrossRefGoogle Scholar
  27. 27.
    H. Conrad, S. Feuerstein, and L. Rice: Mater. Sci. Eng., 1967, vol. 2, pp. 157–68.CrossRefGoogle Scholar
  28. 28.
    D.T. Narutani and J. Takamura: Acta Metall., 1991, vol. 39, pp. 2037-49.CrossRefGoogle Scholar
  29. 29.
    M. Etou, S. Fukushima, T. Sasaki, Y. Haraguchi, K. Miyata, M. Wakita, T. Tomida, N. Imai, M. Yoshida, and Y. Okada: ISIJ Int., 2008, vol. 48, pp. 1142–7.CrossRefGoogle Scholar
  30. 30.
    M.J. Roberts: Metall. Trans., 1970, vol. 1, pp. 3287-94.Google Scholar
  31. 31.
    S. Lee, W. Woo, and B. C. De Cooman: Met. Mater. Trans. A, 2016, vol. 47A, pp. 2125-40.CrossRefGoogle Scholar
  32. 32.
    Y. Xiaoyun, C. Liqing, Z. Yang, D. Hongshuang, and Z. Fuxian: Proc. Eng., 2014, vol. 81, pp. 143-8.CrossRefGoogle Scholar
  33. 33.
    S. Takaki, K. Kawasaki, Y. Kimura: J. Mater. Proc. Techn., 2001, vol. 117, pp. 359-63.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Yoon-Uk Heo
    • 1
  • Joo-Hee Kang
    • 2
  • Nam Hoe Heo
    • 1
  • Sung-Joon Kim
    • 1
  1. 1.Graduate Institute for Ferrous TechnologyPohang University of Science and TechnologyPohangRepublic of Korea
  2. 2.Korea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations