Advertisement

Metallurgical and Materials Transactions A

, Volume 50, Issue 1, pp 132–141 | Cite as

Effect of Saline Atmosphere on the Mechanical Properties of Commercial Steel Wire

  • Lakhindra Marandi
  • Indrani SenEmail author
Article
  • 76 Downloads

Abstract

The effect of saline solution on the mechanical performance of a commercially available galvanized stainless steel wire is studied in detail. Stainless steel of a grade primarily used for automotive applications is used for this study. The investigation is important, especially for considering applications where such wire is subjected to a saline environment. 3.5 pct NaCl solution which replicates seawater composition is used. The quasistatic and fatigue strengths, ductility as well as hardness, and elastic modulus are systematically characterized for the galvanized stainless steel wire pre-immersed in this saline solution. In essence, the role of surface as well as bulk conditions of a material along with the presence of corrosive media in affecting its properties is thoroughly investigated. The results show that pre-immersing the galvanized wire in saline media for a limited time duration of one day produces a protective oxide layer on the surface. This surface layer enhances the resistance of the steel wire against further corrosion. Consequently, the fatigue strength of the material, primarily depending on its surface conditions, improves. On the other hand, the cross-sectional microstructure, protected by the corrosion-resistant outer shell, remains unaffected. The quasistatic strength is also controlled by the bulk of the specimen and therefore varies only nominally. Nanoindentation on the cross-section of the wire reveals no significant changes in the hardness and elastic modulus values as well. This study highlights that optimally pre-immersing in a saline solution improves the fatigue resistance of the galvanized stainless steel wire at the expense of only nominal variations in its tensile properties, hardness, and elastic modulus.

Notes

Acknowledgments

The authors would like to thank Prof. R. Mitra and Dr. S. Mandal, Indian Institute of Technology, Kharagpur, for the UTM and corrosion testing facilities. I.S also acknowledges the support from Science and Engineering Research Board, Department of Science and Technology, India, through research grant YSS/2015/000976.

References

  1. 1.
    F. Bagnoli, L. Allegrucci, M. Colavita, and M. Bernabei: Eng. Fail. Anal., 2009, vol. 16, pp. 1404–1411.CrossRefGoogle Scholar
  2. 2.
    J.L. Gbur and J.J. Lewandowski: Int. Mater. Rev., 2016, vol. 61, pp. 231–314.CrossRefGoogle Scholar
  3. 3.
    C. Xu, H. Xiao, S. Zou, and R. Zeng: Procedia Eng., 2017, vol. 174, pp. 385–391.CrossRefGoogle Scholar
  4. 4.
    S. M. Shelton and W. H. Swanger: J. Res. Natl. Bur. Stand. vol. 14, pp. 17–32, 1935.CrossRefGoogle Scholar
  5. 5.
    E.K. Ioakeimidis, V.N. Kytopoulos, and E. Hristoforou: Mater. Sci. Eng. A, 2013, vol. 583, pp. 254–260.CrossRefGoogle Scholar
  6. 6.
    W. Tian, N. Du, S. Li, S. Chen, and Q. Wu: Corros. Sci., 2014, vol. 85, pp. 372–379.CrossRefGoogle Scholar
  7. 7.
    A. R. Ranji and Z. A. H.: J. Nav. Archit. Mar. Eng., 2010, vol. 7, pp. 93–100.Google Scholar
  8. 8.
    I. Diaz, H. Cano, D. De Fuente, B. Chico, J.M. Vega, and M. Morcillo: Corros. Sci., 2013, vol. 76, pp. 348–360.CrossRefGoogle Scholar
  9. 9.
    N. Michailidis, F. Stergioudi, G. Maliaris, and A. Tsouknidas: Surf. Coatings Technol., 2014, vol. 259, pp. 456–464.CrossRefGoogle Scholar
  10. 10.
    R. Autengruber, G. Luckeneder, and A.W. Hassel: Corros. Sci., 2012, vol. 63, pp. 12–19.CrossRefGoogle Scholar
  11. 11.
    C. Lin and I. Lan: J. Mater. Sci., 2004, vol. 9, pp. 6901–6908.CrossRefGoogle Scholar
  12. 12.
    M. Bruneau and S.M. Zahrai: J. Struct. Eng., 1997, vol. 123, pp. 1478–1476.CrossRefGoogle Scholar
  13. 13.
    M. Okayasu, K. Sato, K. Okada, S. Yoshifuji, and M. Mizuno: J. Mater. Sci., 2009, vol. 44, pp. 306–315.CrossRefGoogle Scholar
  14. 14.
    J. Kocich, J. Sevcikova, and S. Tuleja: Corros. Sci., 1993, vol. 35, pp. 719–725.CrossRefGoogle Scholar
  15. 15.
    J.H. Jiang, A.B. Ma, W.F. Weng, G.H. Fu, Y.F. Zhang, G.G. Liu, and F.M. Lu: Fatigue Fract. Eng. Mater. Struct., 2009, vol. 32, pp. 769–779.CrossRefGoogle Scholar
  16. 16.
    H.J. Godfrey: Trans. Amer. Soc. Met., 1941, vol. 29, pp. 133–168.Google Scholar
  17. 17.
    H. Sun, S. Liu, and L. Sun: Int. J. Electrochem. Sci., 2013, vol. 8, pp. 3494–3509.Google Scholar
  18. 18.
    F. Berto and O. Fergani: Int. J. Fatigue, 2017, vol. 101, pp. 439–447.CrossRefGoogle Scholar
  19. 19.
    F. Berto, S.M.J. Razavi, M.R. Ayatollahi, and F. Mutignani: Procedia Struct. Integr., 2017, vol. 3, pp. 77–84.CrossRefGoogle Scholar
  20. 20.
    F. Berto, F. Mutignani, and L. Pittarello: Procedia Struct. Integr., 2016, vol. 2, pp. 1813–1820.CrossRefGoogle Scholar
  21. 21.
    Y. Bergengren and A. Melander: Int. J. Fatigue, 1992, vol. 14, pp. 154–62.CrossRefGoogle Scholar
  22. 22.
    K. Lambrighs, I. Verpoest, B. Verlinden, and M. Wevers: Procedia Eng., 2010, vol. 2, pp. 173–181.CrossRefGoogle Scholar
  23. 23.
    M.C. Li, S.D. Wang, R.Y. Ma, P.H. Han, and H.Y. Bi: J. Solid State Electrochem., 2012, vol. 16, pp. 3059–3067.CrossRefGoogle Scholar
  24. 24.
    S. Anttila, P. Karjalainen, and S. Lantto: Weld. World, 2013, vol. 57, pp. 335–347.Google Scholar
  25. 25.
  26. 26.
    I. Sen, E. Amankwah, N.S. Kumar, E. Fleury, K. Oh-ishi, K. Hono, and U. Ramamurty: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4491–4499.CrossRefGoogle Scholar
  27. 27.
    K.K. Alaneme, S.M. Hong, I. Sen, E. Fleury, and U. Ramamurty: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4600–4604.CrossRefGoogle Scholar
  28. 28.
    D.J. Carmo, J.F. Dias, and D.B. Santos: Mater. Sci. Technol., 2012, vol. 28, pp. 991–993.CrossRefGoogle Scholar
  29. 29.
    Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 823–830.CrossRefGoogle Scholar
  30. 30.
    J. Petit and F. Lorenzi: Procedia Eng., 2010, vol. 2, pp. 2317–2326.CrossRefGoogle Scholar
  31. 31.
    S. Dhinakaran and R. V Prakash: Mater. Sci. Eng. A, 2014, vol. 609, pp. 204–208.CrossRefGoogle Scholar
  32. 32.
    I. Sen, H. Jirková, B. Mašek, M. Böhme, and M.F.-X. Wagner: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3034–3038.CrossRefGoogle Scholar
  33. 33.
    M. Curioni, P. Skeldon, and G.E. Thompson: Electrochim. Acta, 2013, vol. 105, pp. 642–53.CrossRefGoogle Scholar
  34. 34.
    Z.A. Hamid, S.S.A. El Rehim, A.A. Shama, and M. Ebrahim: J. Surf. Eng. Mater. Adv. Technol., 2016, vol. 6, pp. 58–71.Google Scholar
  35. 35.
  36. 36.
  37. 37.
    M.G. Fontana: Corrosion Engineering, Third Edit., Tata McGraw Hill, 2005.Google Scholar
  38. 38.
    M.E. Mitzithra, F. Deby, J.P. Balayssac, and J. Salin: Nucl. Eng. Des., 2015, vol. 288, pp. 42–55.CrossRefGoogle Scholar
  39. 39.
    Linear Polariz. Resist. Corros. Rate, Theory Background, Doc. DRA 10086 (REV002/APR 2016), 2016, vol. 10086, pp. 1–14.Google Scholar
  40. 40.
    G.E. Badea, A. Caraban, M. Sebesan, S. Dzitac, P. Cret, and A. Setel: J. Sustain. Energy, 2010, vol. 1, pp. 1–4.Google Scholar
  41. 41.
    M. Stern and A.L. Geary: J. Electrochem. Soc., 1957, vol. 104, pp. 56–53.CrossRefGoogle Scholar
  42. 42.
    A.C. Fischer-Cripps: in Mech. Eng. Ser. F.F. Ling, ed., Springer, New York (2009).Google Scholar
  43. 43.
    Q. Kan, W. Yan, G. Kang, and Q. Sun: J. Mech. Phys. Solids, 2015, vol. 61, pp. 2015–2033.CrossRefGoogle Scholar
  44. 44.
    I. Sen, S. Roy, and M.F.X. Wagner: Adv. Eng. Mater., 2017, vol. 19, pp. 1–12.CrossRefGoogle Scholar
  45. 45.
  46. 46.
  47. 47.
  48. 48.
  49. 49.
  50. 50.
    V. Molnár, G. Fedorko, J. Krešák, P. Peterka, and J. Fabianová: Eng. Fail. Anal., 2017, vol. 74, pp. 119–132.CrossRefGoogle Scholar
  51. 51.
    P. Zhang, S.X. Li, and Z.F. Zhang: Mater. Sci. Eng. A, 2011, vol. 529, pp. 62–73.CrossRefGoogle Scholar
  52. 52.
    W.D. Nix and H.J. Gao: J. Mech. Phys. Solids, 1998, vol. 46, pp. 411–425.CrossRefGoogle Scholar
  53. 53.
    I. Sen, K. Gopinath, R. Datta, and U. Ramamurty: Acta Mater., 2010, vol. 58, pp. 6799–6809.CrossRefGoogle Scholar
  54. 54.
    Hertzberg RW (1996) Deformation and Fracture Mechanics of Engineering Materials, 4th edn., vol. 89. Wiley, HobokenGoogle Scholar
  55. 55.
    H. Knobbe, P. Starke, S. Hereñú, H. Christ, and D. Eifler: Int. J. Fatigue, 2015, vol. 80, pp. 81–89.CrossRefGoogle Scholar
  56. 56.
    V.A. Coleman and C. Jagadish: Zinc Oxide Bulk, Thin Film, and Nanostructures. Elsevier, New York, 2006, pp. 1–20.CrossRefGoogle Scholar
  57. 57.
    H.-K. Yoon and Y.-S. Yu: Int. Symp. Electron. Mater., 2005, pp. 169–173.Google Scholar
  58. 58.
    R. Fragoudakis, S. Karditsas, G. Savaidis, and N. Michailidis: Procedia Eng., 2014, vol. 74, pp. 309–312.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations