Advertisement

Retardation of Small Creep–Fatigue Crack in Gr. 91 Steel Through the Combined Effects of Stress Relaxation, Microstructural Evolution, and Oxidation

  • S. Bahl
  • S. Dryepondt
  • L. F. Allard
  • S. Suwas
  • A. Shyam
Article
  • 33 Downloads

Abstract

This investigation reports an unusual effect of hold time (up to 10 seconds) on retardation in the growth of creep–fatigue small cracks at 550 °C in Grade 91 steel. The observed phenomenon was interpreted by elucidating multiple processes that are active in the plastic zone at the crack tip. To this effect, microstructural and mechanical responses of the crack tip plastic zone were compared with the mechanical and microstructural responses during low cycle fatigue/creep–fatigue. It is proposed that the stress relaxation that occurs during the hold time can reduce the stress intensity in the plastic zone of crack tip thus, contributing to retardation in the small crack growth rate. Aside from stress relaxation, stress intensity in the crack tip can be further reduced by the phenomenon of cyclic softening that occurs because of plasticity-induced microstructural coarsening. Separately, the contribution of oxidation-induced crack tip shielding is also considered to explain the observed effects of hold time on crack growth rates. Taken together, a combination of stress relaxation, enhanced rate of cyclic softening, and higher degree of oxidation with the introduction of a hold time is demonstrated to be responsible for reduction in the crack growth under creep–fatigue conditions.

Notes

Acknowledgments

The authors would like to acknowledge C.S. Hawkins, T. Lowe, and T. Jordan for assistance with the experimental work. They also thank Y. Yamamoto, Xinghua Yu, and B.A. Pint for reviewing the manuscript. This material is based upon work supported by the U.S. Department of Energy, Office of Fossil Energy, under the Crosscutting Research Program.

References

  1. 1.
    R. L. Klueh and A. T. Nelson, J. Nucl. Mater. 2007, vol. 371, pp. 37–52.CrossRefGoogle Scholar
  2. 2.
    R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. Van der Schaaf and M. Victoria, J. Nucl. Mater. 2002, vol. 307, pp. 455–65.CrossRefGoogle Scholar
  3. 3.
    F. Abe, Sci. Technol. Adv. Mater. 2008, vol. 9, p. 013002.CrossRefGoogle Scholar
  4. 4.
    S. B. Narasimhachary and A. Saxena, Int. J. Fatigue 2013, vol. 56, pp. 106–13.CrossRefGoogle Scholar
  5. 5.
    A. Stoppato, A. Mirandola, G. Meneghetti and E. L. Casto, Energy 2012, vol. 37, pp. 228–36.CrossRefGoogle Scholar
  6. 6.
    T. P. Farragher, S. Scully, N. P. O’Dowd and S. B. Leen, Int. J. Fatigue 2013, vol. 49, pp. 50–61.CrossRefGoogle Scholar
  7. 7.
    L. Cui and P. Wang, Int. J. Fatigue 2014, vol. 59, pp. 129–36.CrossRefGoogle Scholar
  8. 8.
    B. Fournier, F. Dalle, M. Sauzay, J. Longour, M. Salvi, C. Caës, I. Tournié, P.-F. Giroux and S.-H. Kim, Mater. Sci. Eng. A 2011, vol. 528, pp. 6934–45.CrossRefGoogle Scholar
  9. 9.
    B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, L. Allais, I. Tournie and A. Pineau, Metall. Mater. Trans. A 2009, vol. 40A, pp. 321–29.CrossRefGoogle Scholar
  10. 10.
    B. Fournier, M. Sauzay, F. Barcelo, E. Rauch, A. Renault, T. Cozzika, L. Dupuy and A. Pineau, Metall. Mater. Trans. A 2009, vol. 40A, pp. 330–41.CrossRefGoogle Scholar
  11. 11.
    B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau and A. Pineau, Int. J. Fatigue 2008, vol. 30, pp. 649–62.CrossRefGoogle Scholar
  12. 12.
    R. P. Skelton and D. Gandy, Mater. High Temp. 2008, vol. 25, pp. 27–54.CrossRefGoogle Scholar
  13. 13.
    B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, J. Man, O. Gillia and P. Lemoine, Int. J. Fatigue 2008, vol. 30, pp. 1797–1812.CrossRefGoogle Scholar
  14. 14.
    T. Ogata and M. Yamamoto, JSME Int. J. Ser. A 1997, vol. 40, pp. 283–89.CrossRefGoogle Scholar
  15. 15.
    N. Ab Razak, C. M. Davies and K. M. Nikbin, Eng. Fail. Anal. 2018, vol. 84, pp. 320–30.CrossRefGoogle Scholar
  16. 16.
    M. Jono and A. Sugeta, Fatigue Fract. Eng. Mater. Struct. 1996, vol. 19, pp. 165–74.CrossRefGoogle Scholar
  17. 17.
    Y. Uematsu, M. Akita, M. Nakajima and K. Tokaji, Int. J. Fatigue 2008, vol. 30, pp. 642–48.CrossRefGoogle Scholar
  18. 18.
    A. Shyam, J. E. Allison and J. W. Jones, Acta Mater. 2005, vol. 53, pp. 1499–1509.CrossRefGoogle Scholar
  19. 19.
    A. Shyam, J. E. Allison, C. J. Szczepanski, T. M. Pollock and J. W. Jones, Acta Mater. 2007, vol. 55, pp. 6606–16.CrossRefGoogle Scholar
  20. 20.
    A. Shyam, P. Blau, T. Jordan and N. Yang, Fatigue Fract. Eng. Mater. Struct. 2014, vol. 37, pp. 368–79.CrossRefGoogle Scholar
  21. 21.
    M. J. Caton and S. K. Jha, Int. J. Fatigue 2010, vol. 32, pp. 1461–72.CrossRefGoogle Scholar
  22. 22.
    Z. Chen, A. Shyam, J. Huang, R. F. Decker, S. E. LeBeau and C. J. Boehlert, Metall. Mater. Trans. A 2013, vol. 44A, pp. 1045–58.CrossRefGoogle Scholar
  23. 23.
    J. C. Newman and I. S. Raju, Eng. Fract. Mech. 1981, vol. 15, pp. 185–92.CrossRefGoogle Scholar
  24. 24.
    P. Paris and F. Erdogan, J. Basic Eng. 1963, vol. 85, pp. 528–33.CrossRefGoogle Scholar
  25. 25.
    S. I. Wright, M. M. Nowell and D. P. Field, Microsc. Microanal. 2011, vol. 17, pp. 316–29.CrossRefGoogle Scholar
  26. 26.
    K. Sadananda and P. Shahinian, J. Mater. Sci. 1978, vol. 13, pp. 2347–57.CrossRefGoogle Scholar
  27. 27.
    N. Adefris, A. Saxena and D. L. McDowell, Fatigue Fract. Eng. Mater. Struct. 1996, vol. 19, pp. 401–11.CrossRefGoogle Scholar
  28. 28.
    X. Liu, B. Kang and K.-M. Chang, Mater. Sci. Eng. A 2003, vol. 340, pp. 8–14.CrossRefGoogle Scholar
  29. 29.
    K. V. Jata, D. Maxwell and T. Nicholas, J. Eng. Mater. Technol. 1994, vol. 116, pp. 45–53.CrossRefGoogle Scholar
  30. 30.
    T. Fischer and B. Kuhn, Int. J. Fatigue 2018, vol. 112, pp. 165–72.CrossRefGoogle Scholar
  31. 31.
    N. S. Shah, S. Sunil and A. Sarkar, Metall. Mater. Trans. A 2018, vol. 49A, pp. 2644–53.CrossRefGoogle Scholar
  32. 32.
    M. Sauzay, H. Brillet, I. Monnet, M. Mottot, F. Barcelo, B. Fournier and A. Pineau, Mater. Sci. Eng. A 2005, vol. 400, pp. 241–44.CrossRefGoogle Scholar
  33. 33.
    C. G. Panait, A. Zielińska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A.-F. Gourgues-Lorenzon and W. Bendick, Mater. Sci. Eng. A 2010, vol. 527, pp. 4062–69.CrossRefGoogle Scholar
  34. 34.
    M. Sauzay, B. Fournier, M. Mottot, A. Pineau and I. Monnet, Mater. Sci. Eng. A 2008, vol. 483, pp. 410–14.CrossRefGoogle Scholar
  35. 35.
    B. Fournier, M. Sauzay, C. Caës, M. Mottot, M. Noblecourt and A. Pineau, Mater. Sci. Eng. A 2006, vol. 437, pp. 197–211.CrossRefGoogle Scholar
  36. 36.
    A. Shyam and W. W. Milligan, Acta Mater. 2004, vol. 52, pp. 1503–13.CrossRefGoogle Scholar
  37. 37.
    S. Suresh, G. F. Zamiski and R. O. Ritchie, Metall. Trans. A 1981, vol. 12, pp. 1435–43.CrossRefGoogle Scholar
  38. 38.
    W.-G. Kim, J.-Y. Park, S.-J. Kim and J. Jang, Mater. Des. 2013, vol. 51, pp. 1045–51.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • S. Bahl
    • 1
    • 2
  • S. Dryepondt
    • 1
  • L. F. Allard
    • 1
  • S. Suwas
    • 2
  • A. Shyam
    • 1
  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Indian Institute of ScienceBangaloreIndia

Personalised recommendations