Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 12, pp 6390–6400 | Cite as

Nonuniform Recrystallization and Growth Behavior of β Grains Dominated by Grain Misorientation and Interfacial Energy in Metastable β Titanium Alloy

  • Sensen Huang
  • Yingjie Ma
  • Shilin Zhang
  • Sabry S. Youssef
  • Jianke Qiu
  • Hao Wang
  • Bernie Y. Zong
  • Jiafeng Lei
  • Rui Yang
Article

Abstract

Metastable β titanium alloys usually exhibit nonuniform β grain growth behavior under β solution treatment, resulting in “black spots” with dimension of millimeter or centimeter. In this paper, the nonuniform recrystallization and growth behavior of β grains were studied in the Ti-5Al-5Mo-5V-1Cr-1Fe metastable β titanium alloy. Electron backscatter diffraction technique was used to characterize the crystallographic orientation after β solution in both the normal and abnormal (black spot) macroscopic regions, containing grains with high misorientation angles (> 10 deg) and subgrains with low misorientation angles (< 10 deg), respectively. The nonuniform growth behavior of β grains in the abnormal regions was clarified based on the following two aspects: (1) β grain recrystallization and growth inside the abnormal region were delayed due to the low-accumulated plastic strain and low-angle subgrain boundaries; and the growth of some subgrains with favorable neighboring region was accelerated with the transition from low-angle subgrain boundary to high-angle grain boundary; (2) with enough holding time at the β phase region, the abnormal region was consumed via the normal grains growing inside. The migration of grain boundaries with various orientations depends on the interfacial energy, which is relevant to the misorientation angle and the interfacial plane between the neighboring grains.

Notes

Acknowledgments

This work was supported by Strategic Priority Research Program of the Chinese Academy of Sciences (XDB06050100), Natural Key Research and Development Program of China (2016YFC0304201, 2016YFC0304206), and Natural Science Foundation of China (51401221, 51701219). The authors also would like to acknowledge Professor Dongsheng Xu, Professor Qingmiao Hu, and Professor Chengwu Zheng for their useful discussions.

References

  1. 1.
    S. Balachandran, S. Kumar, D. Banerjee: Acta Mater., 2017, vol. 131, pp. 423-34.CrossRefGoogle Scholar
  2. 2.
    Y. Han, W. Zeng, Y. Qi, Y. Zhao: Mater. Sci. Eng. A., 2011, vol. 528, pp. 8410-16.CrossRefGoogle Scholar
  3. 3.
    Z. Du, S. Xiao, L. Xu, J. Tian, F. Kong, Y. Chen: Mater. Des., 2014, vol. 55, pp. 183-90.CrossRefGoogle Scholar
  4. 4.
    Z.T. Trautt, Y. Mishin: Acta Mater., 2014, vol. 65, pp. 19-31.CrossRefGoogle Scholar
  5. 5.
    K. McReynolds, K.-A. Wu, P. Voorhees: Acta Mater., 2016, vol. 120, pp. 264-72.CrossRefGoogle Scholar
  6. 6.
    V. Randle, R. Davies: Mater. Sci. Technol., 2013, vol. 15, pp. 750-54.CrossRefGoogle Scholar
  7. 7.
    J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, J.S. Li: Mater. Des., 2013, vol. 49, pp. 945-52.CrossRefGoogle Scholar
  8. 8.
    K. Hua, X. Xue, H. Kou, J. Fan, B. Tang, J. Li: J. Alloys Compd., 2014, vol. 615, pp. 531-37.CrossRefGoogle Scholar
  9. 9.
    Y.Q. Ning, X. Luo, H.Q. Liang, H.Z. Guo: Mater. Sci. Eng. A., 2015, vol. 635, pp. 77-85.CrossRefGoogle Scholar
  10. 10.
    A. Paggi, G. Angella, R. Donnini: Mater. Charact., 2015, vol. 107, pp. 174-81.CrossRefGoogle Scholar
  11. 11.
    V.M. Miller, A.E. Johnson, C.J. Torbet, T.M. Pollock: Metall. Trans. A, 2016, vol. 47, pp. 1566-74.CrossRefGoogle Scholar
  12. 12.
    E.A. Holm, M.A. Miodownik, A.D. Rollett: Acta Mater., 2003, vol. 51, pp. 2701-16.CrossRefGoogle Scholar
  13. 13.
    T. Wang, H. Guo, L. Tan, Z. Yao, Y. Zhao, P. Liu: Mater. Sci. Eng. A., 2011, vol. 528, pp. 6375-80.CrossRefGoogle Scholar
  14. 14.
    M.C. Demirel, A.P. Kuprat, D.C. George, and A.D. Rollett: Phys. Rev. Lett., 2003, vol. 90, art. no. 016106.Google Scholar
  15. 15.
    H.E. Neustadter, R.J. Bacigalupi: Surf. Sci., 1967, vol. 6, pp. 246-60.CrossRefGoogle Scholar
  16. 16.
    P. Gobernado, R.H. Petrov, L. Kestens: Mater. Sci. Forum., 2007, vol. 558-559, pp. 879-84.CrossRefGoogle Scholar
  17. 17.
    S.G. Wang, E.K. Tian, C.W. Lung: J. Phys. Chem. Solids, 2000, vol. 61, pp. 1295-1300.CrossRefGoogle Scholar
  18. 18.
    D. Wolf: Philos. Mag. A, 1990, vol. 62, pp. 447-64.CrossRefGoogle Scholar
  19. 19.
    J.K. Qiu, Y.J. Ma, H.B. Ji, J.F. Lei, Y.Y. Liu, R. Yang: Chin. J. Nonferrous Met., vol. 23, pp. 153–58.Google Scholar
  20. 20.
    S.L. Semiatin, J.C. Soper, I.M. Sukonnik: Acta Mater., 1996, vol. 44, pp. 1979–86.CrossRefGoogle Scholar
  21. 21.
    F.J. Gil, J.A. Planell: Mater. Sci. Eng. A., 2000, vol. 283, pp. 17-24.CrossRefGoogle Scholar
  22. 22.
    D.G. Lee, C.L. Li, Y.T. Lee: Adv. Mater. Res., 2014, vol. 1025-1026, pp. 423-426.CrossRefGoogle Scholar
  23. 23.
    S.X. Zhu, J.R. Liu, Q.J. Wang, P. Na, J. Zhang; Heat Treat. Met., 2007, vol. 32, pp. 11-14.Google Scholar
  24. 24.
    F. Yue, X.N. Wang, Z.S. Zhu, J. Li, G.Q. Shang, L.W. Zhu: Mater. Sci. Forum., 2013, vol. 748, pp. 844-49.Google Scholar
  25. 25.
    X.X. Gao, W.D. Zeng, Q.Y. Zhao, S.F. Zhang, M.B. Li, Z.S. Zhu: J. Alloys Compd., 2017, vol. 727, pp. 346-352.CrossRefGoogle Scholar
  26. 26.
    S.L. Semiatin, V. Seetharaman, I. Weiss: JOM-J MIN MET MAT S., 1997, vol. 49, pp. 33-39.CrossRefGoogle Scholar
  27. 27.
    M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399-424.CrossRefGoogle Scholar
  28. 28.
    H. Jazaeri, F.J. Humphreys : Acta Mater., 2004, vol. 52, pp. 3251-62.CrossRefGoogle Scholar
  29. 29.
    F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Amsterdam: Elsevier, 2004, pp. 219–24.Google Scholar
  30. 30.
    G.L. Wu, D.J. Jensen: Acta Mater., 2007, vol. 55, pp. 4955-64.CrossRefGoogle Scholar
  31. 31.
    H.F. Poulsen, E.M. Lauridsen, S. Schmidt, L. Margulies, J.H. Driver: Acta Mater., 2003, vol.51, pp. 2517–29.CrossRefGoogle Scholar
  32. 32.
    M. Miszczyk, H. Paul, J.H. Driver, C. Maurice: Acta Mater., 2015, vol. 83, pp. 120–36.CrossRefGoogle Scholar
  33. 33.
    N.M. Hwang, B.J. Lee, C.H. Han: Scripta Mater., 1997, vol. 37, pp. 1761-67.CrossRefGoogle Scholar
  34. 34.
    G.S. Rohrer: J. Mater. Sci., 2011, vol. 46, pp. 5881-95.CrossRefGoogle Scholar
  35. 35.
    H.-K. Park, S.-D. Kim, S.-C. Park, J.-T. Park, N.-M. Hwang: Scripta Mater., 2010, vol. 62, pp. 376-78.CrossRefGoogle Scholar
  36. 36.
    J.B. Koo, D.Y. Yoon, M.F. Henry: Metall. Trans. A, 2000, vol. 31, pp. 1489-91.CrossRefGoogle Scholar
  37. 37.
    G.S. Rohrer: J. Am. Ceram. Soc., 2011, vol. 94, pp. 633-46.CrossRefGoogle Scholar
  38. 38.
    S. Ratanaphan, D.L. Olmsted, V.V. Bulatov, E.A. Holm, A.D. Rollett, G.S. Rohrer: Acta Mater., 2015, vol. 88, pp. 346-54.CrossRefGoogle Scholar
  39. 39.
    G.S. Rohrer: JOM, 2007, vol. 59, pp. 38-42.CrossRefGoogle Scholar
  40. 40.
    S.J. Dillon, G.S. Rohrer: Acta Mater., 2009, vol. 57, pp. 1-7.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Sensen Huang
    • 1
    • 2
  • Yingjie Ma
    • 2
    • 3
  • Shilin Zhang
    • 2
    • 3
  • Sabry S. Youssef
    • 2
    • 3
  • Jianke Qiu
    • 2
    • 3
  • Hao Wang
    • 2
    • 3
  • Bernie Y. Zong
    • 1
  • Jiafeng Lei
    • 2
    • 3
  • Rui Yang
    • 2
    • 3
  1. 1.School of Materials and Engineering & Key Laboratory for Anisotropy and Texture of MaterialsNortheastern UniversityShenyangChina
  2. 2.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina

Personalised recommendations