Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5823–5832 | Cite as

Wetting Behaviors and Interfacial Characteristics of Sn0.3Ag0.7Cu Alloys Containing Ti or Cr on Graphite

  • Wei Fu
  • Shengpeng Hu
  • Xiaoguo Song
  • Yixuan Zhao
  • Hong Bian
  • Cheng Jin
Article
  • 51 Downloads

Abstract

The interactions of Ti and Cr in a Sn0.3Ag0.7Cu melt with graphite were studied by continuous-heating and isothermal wetting experiments. Active Ti and Cr both had positive influences on the wettability of Sn0.3Ag0.7Cu on graphite. The Sn0.3Ag0.7Cu-Ti melt began to spread on graphite at 650 °C, while the Sn0.3Ag0.7Cu-Cr melt needed a temperature higher than 750 °C. Under the same processes, the spreading of the Sn0.3Ag0.7Cu-Cr melt was faster than that of the Sn0.3Ag0.7Cu-Ti melt. For the Sn0.3Ag0.7Cu-Ti/graphite system, the final contact angle was dependent on the isothermal temperature rather than the content of Ti, and the opposite was observed for the Sn0.3Ag0.7Cu-Cr/graphite system. Microanalyses revealed that nonstoichiometric TiCx and Cr-C compounds (Cr3C2 and Cr7C3) formed at the droplet/graphite interface. A smaller stoichiometry x of TiCx or more Cr7C3 in the Cr-C mixture indicated a better wetting. The thermodynamics of the interfacial reaction was calculated, and it was favorable. The faster spreading of the Sn0.3Ag0.7Cu-Cr melt and the more violent interfacial reaction were due to the higher activity of Cr than Ti in the melt.

Notes

Acknowledgments

We are grateful to the helpful discussion and suggestions of Dr. V. Fabrizio and Dr. A. Passerone of Inst. of Condensed Matter Chemistry and Technologies for Energy-ICMATE-CNR. This project is supported by National Natural Science Foundation of China (Grant Nos. 51775138 and U1537206) and the Key Research & Development Program of Shandong Province (No. 2017GGX40103).

Supplementary material

11661_2018_4895_MOESM1_ESM.pdf (340 kb)
Supplementary material 1 (PDF 339 kb)

References

  1. 1.
    B. Venkataraman and G. Sundararajan: Acta Mater., 2002, vol. 50, pp. 1153-1163CrossRefGoogle Scholar
  2. 2.
    S. Makimura, H. Ozaki, H. Okamura, M. Futakawa, T. Naoe, Y. Miyake, N. Kawamura, K. Nishiyama and M. Kawai: J. Nucl. Mater., 2008, vol. 377, pp. 28-33CrossRefGoogle Scholar
  3. 3.
    N. V. Apollo, D. Lau, A. Ahnood, A. Stacey, K. Ganesan, S. G. Lichter, K. Fox, J. Foroughi, H. Meffin and G. G. Wallace: Carbon, 2016, vol. 107, pp. 180-189CrossRefGoogle Scholar
  4. 4.
    H. Wang, J. Cao and J. Feng: Scripta Mater., 2010, vol. 63, pp. 859-862CrossRefGoogle Scholar
  5. 5.
    N. Moutis, C. Jimenez, X. Azpiroz, T. Speliotis, C. Wilhelmi, S. Messoloras and K. Mergia: J. Mater. Sci., 2010, vol. 45, pp. 74-81CrossRefGoogle Scholar
  6. 6.
    A. K. Ray, A. Kar, S. Kori, L. Pathak and A. Sonnad: J. Mater. Eng. Perform., 2013, vol. 22, pp. 258-266CrossRefGoogle Scholar
  7. 7.
    K. Landry, S. Kalogeropoulou and N. Eustathopoulos: Mater. Sci. Eng., A, 1998, vol. 254, pp. 99-111CrossRefGoogle Scholar
  8. 8.
    W. Fu, S. Hu, X. Song, J. Li, J. Cao, J. Feng and G. Wang: Carbon, 2017, vol. 121, pp. 536-543CrossRefGoogle Scholar
  9. 9.
    X. G. Song, J. H. Chai, S. P. Hu, J. Cao, J. C. Feng and D. Y. Tang: J. Alloy. Compd., 2017, vol. 696, pp. 1199-1204CrossRefGoogle Scholar
  10. 10.
    W. Fu, S. Hu, X. Song, C. Jin, J. Li, Y. Zhao, J. Cao and G. Wang: Ceram. Int., 2017, vol. 43, pp. 13206-13213CrossRefGoogle Scholar
  11. 11.
    L. Yang, P. Shen, Q. Lin, F. Qiu and Q. Jiang: Mater. Chem. Phys., 2010, vol. 124, pp. 499-503CrossRefGoogle Scholar
  12. 12.
    L. Yang, P. Shen, Q. Lin, F. Qiu and Q. Jiang: Appl. Surf. Sci., 2011, vol. 257, pp. 6276-6281CrossRefGoogle Scholar
  13. 13.
    N. Sobczak, J. Sobczak, P. Rohatgi, M. Ksiazek, W. Radziwill and J. Morgiel: Interaction between Ti or Cr containing copper alloys and porous graphite substrate. In Proceedings of 2nd International Conference on High Temperature Capillarity; Cracow, 1997, pp. 145–52.Google Scholar
  14. 14.
    D. Mortimer and M. Nicholas: J. Mater. Sci., 1970, vol. 5, pp. 149-155CrossRefGoogle Scholar
  15. 15.
    O. Dezellus, F. Hodaj, A. Mortensen and N. Eustathopoulos: Scripta Mater., 2001, vol. 44, pp. 2543-2549CrossRefGoogle Scholar
  16. 16.
    L. Gremillard, E. Saiz, J. Chevalier and A. P. Tomsia: Zeitschrift Für Metallkunde, 2004, vol. 95, pp. 261-265CrossRefGoogle Scholar
  17. 17.
    L. Gremillard, E. Saiz, V. R. Radmilovic and A. P. Tomsia: J. Mater. Res., 2006, vol. 21, pp. 3222-3233CrossRefGoogle Scholar
  18. 18.
    E. Saiz, R. Cannon and A. Tomsia: Acta Mater., 2000, vol. 48, pp. 4449-4462CrossRefGoogle Scholar
  19. 19.
    S. Hu, Y. Lei, X. Song, J. Kang, Y. Zhao, J. Cao and D. Tang: J. Mater. Sci., 2018, vol. 53, pp. 6864-6871CrossRefGoogle Scholar
  20. 20.
    R. Koleňák, P. Šebo, M. Provazník, M. Koleňáková and K. Ulrich: Mater. Des., 2011, vol. 32, pp. 3997-4003CrossRefGoogle Scholar
  21. 21.
    W. Fu, X. Song, S. Hu, J. Chai, J. Feng and G. Wang: Mater. Des., 2015, vol. 87, pp. 579-585CrossRefGoogle Scholar
  22. 22.
    R. Standing and M. Nicholas: J. Mater. Sci., 1978, vol. 13, pp. 1509-1514CrossRefGoogle Scholar
  23. 23.
    H. Okamoto: J. Phase Equilib. Diff., 2010, vol. 31, pp. 202-203CrossRefGoogle Scholar
  24. 24.
    M. Venkatraman and J. Neumann: Bulletin of Alloy Phase Diagrams, 1990, vol. 11, pp. 152-159CrossRefGoogle Scholar
  25. 25.
    [25] M. Venkatraman and J. Neumann: J. Phase Equilib., 1988, vol. 9, pp. 159-162CrossRefGoogle Scholar
  26. 26.
    N. Zarrinfar, P. Shipway, A. Kennedy and A. Saidi: Scripta Mater., 2002, vol. 46, pp. 121-126CrossRefGoogle Scholar
  27. 27.
    N. Frage, N. Froumin and M. Dariel: Acta Mater., 2002, vol. 50, pp. 237-245CrossRefGoogle Scholar
  28. 28.
    L. Lu, J. Y. H. Fuh, Z. D. Chen, C. C. Leong and Y. S. Wong: Mater. Res. Bull., 2000, vol. 35, pp. 1555-1561CrossRefGoogle Scholar
  29. 29.
    H. Kleykamp: J. Alloy. Compd., 2001, vol. 321, pp. 138-145CrossRefGoogle Scholar
  30. 30.
    G. Vassilev: Journal of Mining and Metallurgy, Section B: Metallurgy, 2005, vol. 41, pp. 79-93CrossRefGoogle Scholar
  31. 31.
    W. Fu, X. G. Song, Y. X. Zhao, J. Cao, J. C. Feng, C. Jin and G. D. Wang: Mater. Des., 2017, vol. 115, pp. 1-7CrossRefGoogle Scholar
  32. 32.
    R. Voytovych, F. Robaut and N. Eustathopoulos: Acta Mater., 2006, vol. 54, pp. 2205-2214CrossRefGoogle Scholar
  33. 33.
    N. Eustathopoulos and R. Voytovych: J. Mater. Sci., 2016, vol. 51, pp. 425-437CrossRefGoogle Scholar
  34. 34.
    G. Kumar and K. N. Prabhu: Adv. Colloid. Interfac., 2007, vol. 133, pp. 61-89CrossRefGoogle Scholar
  35. 35.
    Z. Moser, W. Gasior and J. Pstruś: J. Phase Equilib., 2001, vol. 22, pp. 254-258CrossRefGoogle Scholar
  36. 36.
    A. Miriyev, M. Sinder and N. Frage: Acta Mater., 2014, vol. 75, pp. 348-355CrossRefGoogle Scholar
  37. 37.
    F. Hodaj, O. Dezellus, J. Barbier, A. Mortensen and N. Eustathopoulos: J. Mater. Sci., 2007, vol. 42, pp. 8071-8082CrossRefGoogle Scholar
  38. 38.
    R. Voitovitch, A. Mortensen, F. Hodaj and N. Eustathopoulos: Acta Mater., 1999, vol. 47, pp. 1117-1128CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  2. 2.Shandong Provincial Key Laboratory of Special Welding TechnologyHarbin Institute of Technology at WeihaiWeihaiChina

Personalised recommendations