Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5858–5870 | Cite as

Porosity Reduction in New Thin Films of Ceramic Coatings on Stainless Steel by Annealing at Reduced Pressure

  • G. I. Cubillos
  • M. Bethencourt
  • J. E. Alfonso
  • E. Rodríguez-Castellón
  • E. Romero
Article
  • 18 Downloads

Abstract

New ZrOxNy thin films were deposited via reactive RF magnetron sputtering on stainless steel substrate from a Y2O3-doped ZrO2 (3YSZ) target. In order to reduce their porosity and increase corrosion resistance, the films were annealed at 265 °C in an inert atmosphere at reduced pressure, increasing their density and corrosion resistance in saline solution. The crystal structure of the films was characterized by means of X-ray diffraction, the morphology via scanning electron microscopy and atomic force microscopy, and the chemical composition via X-ray photoelectron spectroscopy. The corrosion resistance was evaluated using electrochemical techniques based on linear polarization. The results show that the annealing treatment decreases the morphological imperfections of the coatings such as pores and cracks, which allows increasing the corrosion resistance of the substrate-coating system.

Notes

Acknowledgments

This research was supported by the Fundación para la Promoción de la Investigación y la Tecnología, Asociación de Universidades Iberoamericanas, Ministry of Economy, Industry and Competitiveness of Spain/FEDER Program of the EU (MAT 2013-40823-R, MAT2014-60857-R, and CTQ2015-68951-C3-3-R), CSD2009-00013, and Universidad Nacional de Colombia Proyect DIB 35637.

References

  1. 1.
    X. Chen, Q. Fu, Y. Jin,M. Li, R. Yang, X. Cui and M. Gong: Mater. Sci. Eng. C., 2017, vol. 70, pp. 1071-1075.CrossRefGoogle Scholar
  2. 2.
    A. Qingbo, T. Huiping, W. Jianzhong, Z. Hao, M. Jun, L. Bin: Rare Metal Mat. Eng., 2014, vol.43(10), pp. 2344-2348.CrossRefGoogle Scholar
  3. 3.
    N.F. Daudt, M. Brama, A.P. Cysne-Barbosa and C. Alves: Mater Lett., 2015, vol. 141, pp. 194-197.CrossRefGoogle Scholar
  4. 4.
    M.A.H. Gepreela and M. Niinomi: J Mech Behav Biomed Mater Title, 2013, vol. 20, pp. 407-415.CrossRefGoogle Scholar
  5. 5.
    L. Wanga, X. Hua, X. Maa, Z. Ma, Y. Zhang, Y. Lua, X. Li, W. Lei and Y. Feng: Colloids Surf B., 2016, vol. 148, pp. 440-452.CrossRefGoogle Scholar
  6. 6.
    S. Jain, N. D. Budiansky, J.L. Hudson and J.R. Scully: Corros Sci., 2010, vol. 52, pp. 873-885.CrossRefGoogle Scholar
  7. 7.
    N.H. Turner, D.E, Ramaker and F.L. Hutson: J. Electron. Spectrosc. Relat. Phenom., 1993, vol. 63, pp. 117-130.CrossRefGoogle Scholar
  8. 8.
    G.I. Cubillos, J.J. Olaya, D. Clavijo, J.E. Alfonso and C. Cardozo. Thin Solid Films, 2013, vol. 529, pp. 342–346.CrossRefGoogle Scholar
  9. 9.
    M. Stern and A.L. Geary: J Electrochem Soc., 1957, vol. 104, pp. 56-63.CrossRefGoogle Scholar
  10. 10.
    A.W. Burton, K. Ong, T. Rea and I.Y. Chan: Microporous Mesoporous Mater., 2009, vol. 117(1-2), pp. 75-90.CrossRefGoogle Scholar
  11. 11.
    R. Konar, J. Mukhopadhyay, A.D. Sharma and R.N. Basu RN: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 1151 -1160.CrossRefGoogle Scholar
  12. 12.
    J. Joos, M. Ender, I. Rotscholl, N.H. Menzler and E. Ivers-Tiffée: J. Power Sources, 2014, vol. 246, pp. 819-830.CrossRefGoogle Scholar
  13. 13.
    J.J. Roa, M.A. Laguna-Bercero, A. Larrea, V.M. Orera and M. Segarra: Ceram. Int., 2011, vol. 37, pp. 3123–3131.CrossRefGoogle Scholar
  14. 14.
    Z. Ba, Q. Dong, X. Zhanga, J. Wang, C. Yuan and Y. Liao: Surf. Coat. Tech., 2016, vol. 294, pp. 67-74.CrossRefGoogle Scholar
  15. 15.
    G.I. Cubillos, M. Bethencourt, J.J. Olaya: Appl. Surf. Sci., 2015, vol. 327, pp. 288–295.CrossRefGoogle Scholar
  16. 16.
    M.A. Signore, A. Rizzo, L. Mirenghi, M.A. Tagliente and A. Cappello: Thin Solid Films, 2007, vol. 515, pp. 6798-6804.CrossRefGoogle Scholar
  17. 17.
    A. Rizzo, M.A. Signore, L. Mirenghia and T. Di Luccio: Thin Solid Films, 2009, vol. 517(21), pp. 5956-5964.CrossRefGoogle Scholar
  18. 18.
    A. Rizzo, M.A. Signore, L. Mirenghi, L. Tapfer, E. Piscopiello, E. Salernitano and R. Giorgi: Thin Solid Films, 2012, vol. 520, pp. 3532-3538.CrossRefGoogle Scholar
  19. 19.
    D. Roman, J. Bernardi, C. de Amorim, F. de Souza, A. Spinelli, C. Giacomellid, C. Figueroa, I. Baumvol and R. Basso: Mater. Chem. Phys., 2011, vol. 130, pp. 147-153.CrossRefGoogle Scholar
  20. 20.
    I. Milosev, H.H. Strehblow and B. Navingek: Surf. Coat. Tech., 1995, vol. 74-75, pp. 897-902.CrossRefGoogle Scholar
  21. 21.
    Y. H. Wong and K.Y. Cheong: Thin Solid Films, 2012, vol. 520, pp. 6822-6829.CrossRefGoogle Scholar
  22. 22.
    G.I. Cubillos, M.E. Mendoza, J.E. Alfonso, G. Blanco, M. Bethencourt: Mater Charac. 2017, vol. 131, pp. 450-458.CrossRefGoogle Scholar
  23. 23.
    J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben. Handbook of X-Ray Photoelectron Spectroscopy. Minnesota (MN): Perkin Elmer Corporation, 1992.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • G. I. Cubillos
    • 1
  • M. Bethencourt
    • 2
  • J. E. Alfonso
    • 3
  • E. Rodríguez-Castellón
    • 4
  • E. Romero
    • 1
  1. 1.Group of Materials and Chemical Processes, Department of ChemistryUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Department of Materials Science, Metallurgy Engineering and Inorganic Chemistry, International Campus of Excellence of the Sea (CEI-MAR)University of CadizPuerto RealSpain
  3. 3.Group of Material and Surface Science, Department of PhysicsUniversidad Nacional de ColombiaBogotáColombia
  4. 4.Department of Inorganic Chemistry, Crystallography and Mineralogy (Unit Associated to ICP-CSIC), Faculty of SciencesUniversity of MalagaMálagaSpain

Personalised recommendations