Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5574–5584 | Cite as

A Novel Composition Design Method for Beta-Gamma TiAl Alloys with Excellent Hot Workability

  • Fantao Kong
  • Ning Cui
  • Yuyong Chen
  • Xiaopeng Wang
Article
  • 131 Downloads

Abstract

Beta-gamma TiAl alloys are promising light-weight structural materials for use in high-temperature applications. Disordered β phase at high temperature is beneficial to the hot workability of the alloys, while ordered β0 phase at room temperature is detrimental to the ductility of the alloys. However, we have not yet found a better way to quantitatively control β and β0 phase, which is key to improving the mechanical properties of beta-gamma TiAl alloys. In this paper, the effects of various β stabilizers on the contents of β0 and β phase were investigated. A quantitative composition design method for beta-gamma TiAl alloys was proposed. A room-temperature Mo equivalent ([Mo]eq-RT) was developed to estimate β0 phase content. Microstructural observations show that no β0 phase will precipitate in TiAl alloys when the value of [Mo]eq-RT is below 1. A high-temperature Mo equivalent ([Mo]eq-HT) was introduced to evaluate the hot workability of TiAl alloys. The relationship among alloy composition, β phase content, and hot workability was constructed. Isothermal compression tests indicate that the hot workability of TiAl alloys can be significantly improved when [Mo]eq-HT reaches above 1.3. The validity of [Mo]eq-RT and [Mo]eq-HT were verified by actual experiments. Two equivalence formulas provide important guidance for the composition design of beta-gamma TiAl alloys.

Notes

Acknowledgments

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Project No. 51471056 and No. 51704174) and the State Key Laboratory for Advanced Metal and Materials foundation (Project No. 2016-ZD01) and Shandong Natural Science Foundation (No. ZR2018BEE020).

References

  1. 1.
    H. Clemens and S. Mayer: Mater High Temp., 2016, vol. 33, pp. 1-11.CrossRefGoogle Scholar
  2. 2.
    F. Appel, J.D.H. Paul and M. Oehring: Gamma titanium aluminide alloys: science and technology, John Wiley & Sons, Germany, 2011, pp. 1-3.Google Scholar
  3. 3.
    Y.W. Kim: Mater. Sci. Eng. A, 1995, vol. 192, pp. 519-533.CrossRefGoogle Scholar
  4. 4.
    X.F. Ding, J.P. Lin, L.Q. Zhang, Y.Q. Su and G.L. Chen: Acta Mater., 2012, vol. 60, pp. 498-506.CrossRefGoogle Scholar
  5. 5.
    M. Schloffer, F. Iqbal, H. Gabrisch, E. Schwaighofer, F.P. Schimansky, S. Mayer, A. Stark, T. Lippmann, M. Göken, F. Pyczak and H. Clemens: Intermetallics, 2012, vol. 22, pp. 231-240.CrossRefGoogle Scholar
  6. 6.
    J.S. Kim, Y.H. Lee, Y.W. Kim and C.S. Lee: Mater. Sci. Forum, 2007, vol. 539-543, pp. 1531-1536.CrossRefGoogle Scholar
  7. 7.
    S.Z. Zhang, Y.B. Zhao, C.J. Zhang, J.C. Han, M.J. Sun and M. Xu: Mater. Sci. Eng. A, 2017, vol. 700, pp. 366-373.CrossRefGoogle Scholar
  8. 8.
    I.J. Watson, K.D. Liss, H. Clemens, W. Wallgram, T. Schmoelzer, T.C. Hansen and M. Reid: Adv. Eng. Mater., 2009, vol. 11, pp. 932-937.CrossRefGoogle Scholar
  9. 9.
    H.W. Rosenberg: Titanium alloying in theory and practice, Pergamon press, Oxford, 1970, pp. 851-859.Google Scholar
  10. 10.
    E.K. Molchanova (1965) Phase diagrams of titanium alloys. Israel Program for Scientific Translations, Jerusalem, 1965, pp. 1-10.Google Scholar
  11. 11.
    F.S. Sun, C.X. Cao, M.G. Yan and S.E. Kim: Metall Mater Trans A, 2001, vol. 32, pp. 1573-1589.CrossRefGoogle Scholar
  12. 12.
    M. Takeyama and S. Kobayashi: Intermetallics, 2005, vol. 13, pp. 993-999.CrossRefGoogle Scholar
  13. 13.
    H. Clemens, A. Bartels, S. Bystrzanowski, H. Chladil, H. Leitner, G. Dehm, R. Gerling and F.P. Schimansky: Intermetallics, 2006, vol. 14, pp. 1380-1385.CrossRefGoogle Scholar
  14. 14.
    Y.W. Kim, S.L. Kim, D. Dimiduk and C. Woodward: Structural aluminides for elevated temperatures, John Wiley & Sons, Warrendale, 2008, pp. 215-225.Google Scholar
  15. 15.
    R. Kainuma, Y. Fujita, H. Mitsui, I. Ohnuma and K. Ishida: Intermetallics, 2000, vol. 8, pp. 855-867.CrossRefGoogle Scholar
  16. 16.
    J.C. Schuster and M. Palm: J. Phase Equilib. Diffus., 2006, vol. 27, pp. 255-277.CrossRefGoogle Scholar
  17. 17.
    G.L. Chen, J.G. Wang, X.D. Ni, J.P. Lin and Y.L. Wang: Intermetallics, 2005, vol. 13, pp. 329-336.CrossRefGoogle Scholar
  18. 18.
    S. Naka, M. Thomas, C. Sanchez, T. Khan, M. Nathal, R. Darolia, C. Liu, P. Martin, D. Miracle and R. Wagner: Structural intermetallics, Warrendale, PA, TMS, 1997, pp. 313-319.Google Scholar
  19. 19.
    Y. Jin, J.N. Wang, J. Yang and Y. Wang: Scr. Mater., 2004, vol. 51, pp. 113-117.CrossRefGoogle Scholar
  20. 20.
    T. Schmoelzer, K.D. Liss, G.A. Zickler, I.J. Watson, L.M. Droessler, W. Wallgram, T. Buslaps, A. Studer and H. Clemens: Intermetallics, 2010, vol. 18, pp. 1544-1552.CrossRefGoogle Scholar
  21. 21.
    J. Lou and W. Soboyejo: Metall Mater Trans A, 2001, vol. 32, pp. 325-337.CrossRefGoogle Scholar
  22. 22.
    G.B. Viswanathan, S. Kartikeyan, M.J. Mills and V.K. Vasudevan: Mater. Sci. Eng. A, 2001, vol. 319, pp. 833-837.CrossRefGoogle Scholar
  23. 23.
    T. Tetsui, K. Shindo, S. Kobayashi and M. Takeyama: Scr. Mater., 2002, vol. 47, pp. 399-403.CrossRefGoogle Scholar
  24. 24.
    Y.H. Wang, J.P. Lin, Y.H. He, Y.L. Wang and G.L. Chen: Mater. Sci. Eng. A, 2007, vol. 471, pp. 82-87.CrossRefGoogle Scholar
  25. 25.
    Y.J. Su, F.T. Kong, Y.Y. Chen, N. Gao and D.L. Zhang: Intermetallics, 2013, vol. 34, pp. 29-34.CrossRefGoogle Scholar
  26. 26.
    T. Carneiro and Y.W. Kim: Intermetallics, 2005, vol. 13, pp. 1000-1007.CrossRefGoogle Scholar
  27. 27.
    Y.W. Kim: J. Chin. Inst. Chem. Eng., 1999, vol. 22, pp. 13-25.CrossRefGoogle Scholar
  28. 28.
    Y.Y. Chen, B.H. Li and F.T. Kong: T Nonferr Metal Soc, 2007, vol. 17, pp. 58-63.CrossRefGoogle Scholar
  29. 29.
    E. Schwaighofer, H. Clemens, J. Lindemann, A. Stark and S. Mayer: Mater. Sci. Eng. A, 2014, vol. 614, pp. 297-310.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Fantao Kong
    • 1
  • Ning Cui
    • 2
  • Yuyong Chen
    • 1
  • Xiaopeng Wang
    • 1
  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  2. 2.School of Mechanical EngineeringQingdao University of TechnologyQingdaoChina

Personalised recommendations