Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5259–5270 | Cite as

Characterization of the Martensitic Transformation in NiPtAl Alloy Using Digital Holographic Imaging

  • Benjamin P. ThiesingEmail author
  • Sebastien Dryepondt
  • Donovan Leonard
  • Ralph B. Dinwiddie
  • Christopher J. Mann


Surface reliefs due to phase transformations in a 56.8Ni-5.6Pt-37.6Al at. pct alloy were characterized in situ using digital holographic imaging during thermal cycling from room temperature up to 405 K (132 °C). The 3D images of the surface revealed that the austenite plates formed during heating are exactly the same for each cycle, which is not the case for the martensite plates formed during cooling. The martensite start temperature was found to vary by up to ~ 20 K from one grain to another within the same specimen. The absence of Ni3Al γ′ precipitates, due to the relatively high Al content, results in the propagation of the martensitic transformation over grains up to a millimeter in size. Bright-field optical imaging showed the formation of large martensite plates in some grains, with cracks perpendicular to these plates, upon cycling. Cracks were also observed at grain boundaries and could be related to the height variations across the grain boundaries.



The authors wish to acknowledge T. Jordan and A. Passian for assistance with the experimental work and B. Pint, Y. Yamamoto, and M. Brady for reviewing the manuscript. This research was sponsored by the U.S. Department of Energy through the Laboratory Directed Research and Development (Seed) Program at Oak Ridge National Laboratory.

Supplementary material

Supplementary material 1 (MP4 53596 kb)

Supplementary material 2 (MP4 17067 kb)

Supplementary material 3 (MP4 27529 kb)

Supplementary material 4 (MP4 118698 kb)

Supplementary material 5 (MP4 49565 kb)

Supplementary material 6 (MP4 50369 kb)


  1. 1.
    N.P. Padture, M. Gell, H. Jordan, Sci., 2002, vol. 296, pp. 280-284.CrossRefGoogle Scholar
  2. 2.
    P. Deb, D.H. Boone, T.F. Manley (1987) J. Vac. Sci. Technol., 5, 3366-3367.CrossRefGoogle Scholar
  3. 3.
    VK Tolpygo, Clarke DR., Acta Mater., 2004, vol. 52, pp. 5115–27.Google Scholar
  4. 4.
    VK Tolpygo, Clarke DR., Acta Mater., 2004, vol. 52, pp. 5129–41.Google Scholar
  5. 5.
    S Dryepondt, JR Porter and D.R. Clarke, Acta Mater., 2009, vol. 57, pp. 1717-23.CrossRefGoogle Scholar
  6. 6.
    S Dryepondt and D.R. Clarke, Scr. Mater., 2009, vol. 60, pp. 917-920.CrossRefGoogle Scholar
  7. 7.
    R. Nutzel, E. Affeldt and M. Goken, Int. J. Fatigue., 2008, vol. 30, pp. 313–317.CrossRefGoogle Scholar
  8. 8.
    D.S. Balint and J.W. Hutchinson, J. Mech. Phys. Solids., 2005, vol. 53, pp. 949-973.CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, J.A. Haynes, B.A. Pint, I.G. Wright, Surf. Coat. Technol., 2003, vol. 163-164, pp. 19-24.CrossRefGoogle Scholar
  10. 10.
    D Pan, MW Chen, PK Wright, KJ Hemker, Acta Mater., 2003, vol. 51, pp. 2205-2217.CrossRefGoogle Scholar
  11. 11.
    MW Chen, RT Ott, TC Hufnagel, P.K. Wright, KJ Hemker, Surf. Coat. Technol., 2003, vol. 163-164, pp. 25-30CrossRefGoogle Scholar
  12. 12.
    MW Chen, ML Glynn, RT Ott, TC Hufnagel, KJ Hemker, Acta Mater., 2003, vol. 51, pp. 4279-4294.CrossRefGoogle Scholar
  13. 13.
    B.A. Pint, S.A. Speakman, C.J. Rawn and Y. Zhang, JOM, 2006, vol. 58 (1), pp. 47-52.CrossRefGoogle Scholar
  14. 14.
    S. Rosen and J.A. Goebel, Trans. TMS-AIME, 1968, vol. 242, pp. 722-724.Google Scholar
  15. 15.
    J.L. Smialek, R.F. Hehemann, Metall. Trans., 1973, vol. 4, pp. 1571-1575.Google Scholar
  16. 16.
    D.J. Sordelet, M.F. Besser, R.T. Ott, B.J. Zimmerman, W.D. Porter and B. Gleeson, Acta Mater., 2007, vol. 55, pp. 2433–2441.CrossRefGoogle Scholar
  17. 17.
    B. Thiesing, C. J. Mann, S. Dryepondt, Appl. Opt., 2013, vol. 52 (19), pp. 4426-4432.CrossRefGoogle Scholar
  18. 18.
    E.P. George and C.T. Liu, J. Mater. Res., 1990, vol. 5 (4), pp. 754-762.CrossRefGoogle Scholar
  19. 19.
    R. Darolia, JOM, 1991, vol. 3, pp. 44-49.CrossRefGoogle Scholar
  20. 20.
    Ph. Boullay, D. Schryvers, J.M. Ball, Acta Mater., 2003, vol. 51, pp. 1421-1436.CrossRefGoogle Scholar
  21. 21.
    M. Clancy, M.J. Pomeroy, C. Dickinson, J. Alloys. Compd., 2012, vol. 523, pp. 11-15.CrossRefGoogle Scholar
  22. 22.
    M. Clansy, Ph.D. Thesis, University of Limerick,
  23. 23.
    B. Gleeson, W. Wang, S. Hayashi, Mater. Sci. Forum., 2004, vol. 461–464, pp. 213-222.CrossRefGoogle Scholar
  24. 24.
    R.J. Thompson, J.-C. Zhao, K.J. Hemker, Intermetallics, 2010, vol. 18, pp. 796–802.CrossRefGoogle Scholar
  25. 25.
    Y.X. Cui, L. Zhen, D.Z. Yang, G.P. Bi, Q. Wang, Mater. Lett., 2001, vol. 48, pp. 121-126.CrossRefGoogle Scholar
  26. 26.
    M.Z. Alam, D. Chatterjee, S.V. Kamat, V. Jayaram, D.K. Das, Mater. Sci. Eng. A, 2010, vol. 527 (26), pp. 7147-7150.CrossRefGoogle Scholar
  27. 27.
    H.S. Yang and H. K. D. H. Bhadeshia, Scr. Mater., 2009, vol. 60, pp. 493–95.CrossRefGoogle Scholar
  28. 28.
    V. A. Esin, V. Maurel, P. Breton, A. Koster, S. Selezneff, Acta Mater., 2016, vol. 105, 505-518CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Benjamin P. Thiesing
    • 1
    Email author
  • Sebastien Dryepondt
    • 2
  • Donovan Leonard
    • 2
  • Ralph B. Dinwiddie
    • 2
  • Christopher J. Mann
    • 1
  1. 1.Northern Arizona UniversityFlagstaffUSA
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations