Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5763–5774 | Cite as

Effect of Stress Relieving Heat Treatment on the Microstructure and High-Temperature Compressive Deformation Behavior of Ti-6Al-4V Alloy Manufactured by Selective Laser Melting

  • Young-Kyun Kim
  • Soon-Hong Park
  • Yong-Jin Kim
  • Bandar Almangour
  • Kee-Ahn Lee
Article

Abstract

This study aims to investigate the effect of stress relieving heat treatment on the microstructure and high-temperature compressive deformation behavior of the Ti-6Al-4V alloy, manufactured by selective laser melting. Initial microstructural observation confirmed elongated prior β grains in the building direction of both specimens (as-fabricated and heat-treated specimens). Along with such, the as-fabricated specimen only featured α′-martensite phase, while the heat-treated specimen featured α′-martensite and some α and β phases. Compression tests carried out at room temperature gave yield strengths of 1365 and 1138 MPa for the as-fabricated and heat-treated specimens, respectively. Such values are similar or greater than those of commercial wrought materials. The compressive fracture strain significantly increased after heat treatment. There was a general tendency of reducing yield strength as compressive temperatures increased. At temperatures greater than 700 °C, the as-fabricated and heat-treated specimens achieved similar strength. Microstructural observation after deformation confirmed that the initial microstructure was retained up to temperatures of 500 °C. At 700 °C or greater, both specimens showed drastic microstructural evolution.

Notes

Acknowledgment

This research was supported by the Korean Institute of Materials Science, Korea.

References

  1. 1.
    M. Vaezi, H. Seitz, and S. Yang: Int. J. Adv. Manuf. Technol., 2013, vol. 67, pp. 1721–54.CrossRefGoogle Scholar
  2. 2.
    L. Facchini, E. Magalini, and P. Robotti: Rapid Prototyp. J., 2009, vol. 15, pp. 171–78.CrossRefGoogle Scholar
  3. 3.
    C. Qiu, N.J.E. Adkins, and M.M. Attallah: Mater. Sci. Eng. A, 2013, vol. 578, pp. 230–39.CrossRefGoogle Scholar
  4. 4.
    E.J. Bae, J.H. Kim, W.C. Kim, and H.Y. Kim: J. Adv. Prosthodont., 2014, vol. 6, pp. 266–71.CrossRefGoogle Scholar
  5. 5.
    B. Nie, H. Huang, S. Bai, and J. Liu: Appl. Phys. A, 2015, vol. 118, pp. 37–41.CrossRefGoogle Scholar
  6. 6.
    S. Bremen, W. Meiners, and A. Diatlov: Laser Techn. J., 2012, vol. 9, pp. 33–38.CrossRefGoogle Scholar
  7. 7.
    F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto: J. Mater. Process. Technol., 2001, vol. 111, pp. 210–13.CrossRefGoogle Scholar
  8. 8.
    Z. Lijing, L. Yingying, S. Shaobo, and Z. Hu: Chin. J. Aeronaut., 2015, vol. 28, pp. 564–69.CrossRefGoogle Scholar
  9. 9.
    D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe: Acta Mater., 2012, vol. 60, pp. 3849–60.CrossRefGoogle Scholar
  10. 10.
    M. Simonelli, Y.Y. Tse, and C. Tuck: Annual International Solid Freeform Fabrication Symposium, University of Texas, Austin, TX, 2012.Google Scholar
  11. 11.
    R.A. Wood: Titanium Alloy Handbook, Metals and Ceramics Information Center, Battelle, Columbus, OH, Dec 1972, publication no. MCIC-HB-02.Google Scholar
  12. 12.
    J.P. Blanchard, A. Chen, and B. Qiu: Nucl. Instrum. Meth. B, 1993, vol. 82, pp. 63–68.CrossRefGoogle Scholar
  13. 13.
    M.K. Mcquillan: J. Metall. Rev., 1963, vol. 8, pp. 41–104.Google Scholar
  14. 14.
    M. Niinomi: Mater. Sci. Eng. A, 1998, vol. 243, pp. 231–36.CrossRefGoogle Scholar
  15. 15.
    I. Gurrappa: Mater. Charact., 2003, vol. 51, pp. 131–39.CrossRefGoogle Scholar
  16. 16.
    F.H. Froes, H. Friedrich, J. Kiese, and D. Bergoint: JOM, 2004, vol. 56, pp. 40–44.CrossRefGoogle Scholar
  17. 17.
    Q. Huang, X. Liu, X. Yang, R. Zhang, Z. Shen, and Q. Feng: Front. Mater. Sci., 2015, vol. 9, 373–81.CrossRefGoogle Scholar
  18. 18.
    B. Vrancken, L. Thijs, J.P. Kruth, and J.V. Humbeeck: J. Alloy Compd., 2012, vol. 541, 177–85.CrossRefGoogle Scholar
  19. 19.
    G.M.T. Haar and T.H. Becker: Materials, 2018, vol. 11(1), p. 146.Google Scholar
  20. 20.
    H.K. Rafi, T.L. Starr, and B.E. Stucker: Int. J. Adv. Manuf. Technol., 2013, vol. 69, 1299–1309.CrossRefGoogle Scholar
  21. 21.
    T. Vilaro, C. Colin, and J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3190–99.CrossRefGoogle Scholar
  22. 22.
    S. Leuders, M. Thone, A. Riemer, T. Niendorf, T. Troster, H.A. Richard, and H.J. Maier: Int. J. Fatigue, 2013, vol. 48, pp. 300–07.CrossRefGoogle Scholar
  23. 23.
    Y.K. Kim, S.H. Park, J.H. Yu, B. AlMangour, and K.A. Lee: Mater. Sci. Eng. A, 2018, vol. 715, pp. 33–40.CrossRefGoogle Scholar
  24. 24.
    B. Baufeld, O.V.D. Biest, and R. Gault: Mater. Des., 2010, vol. 31, pp. S106–S111.CrossRefGoogle Scholar
  25. 25.
    S.L. Campanelli, N. Contuzzi, A.D. Ludovico, F. Caiazzo, F. Cardaropoli, and V. Sergi: Materials, 2014, vol. 7, pp. 4803–22.CrossRefGoogle Scholar
  26. 26.
    T. Becker, M.V. Rooyen, and D. Dimitrov: S. Afr. J. Ind. Eng., 2015, vol. 26, pp. 93–103.Google Scholar
  27. 27.
    M. Simonelli, Y.Y. Tse, and C. Tuck: Metall. Mater. Trans. A, 2014, vol. 45A, 2863–72.CrossRefGoogle Scholar
  28. 28.
    T.J. Ruggles, T.M. Rampton, A. Khosravani, and D.T. Fullwood: Ultramicroscopy, 2016, vol. 164, pp. 1–10.CrossRefGoogle Scholar
  29. 29.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.CrossRefGoogle Scholar
  30. 30.
    S.H. Joo, H. Kato, M.J. Jang, J. Moon, C.W. Tsai, J.W. Yeh, and H.S. Kim: Mater. Sci. Eng. A, 2017, vol. 689, pp. 122–33.CrossRefGoogle Scholar
  31. 31.
    L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth: Acta Mater., 2010, vol. 58, pp. 3303–12.CrossRefGoogle Scholar
  32. 32.
    L.E. Murr, E.V. Esquivel, S.A. Quniones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernadez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker: Mater. Charact., 2009, vol. 60, pp. 96–105.CrossRefGoogle Scholar
  33. 33.
    B. Vandenbroucke and J.P. Kruth: Rapid Prototyp. J., 2007, vol. 13, pp. 193–203.CrossRefGoogle Scholar
  34. 34.
    L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges, and K. Wissenbach: Rap. Prototyp. J., 2010, vol. 16, pp. 450–59.CrossRefGoogle Scholar
  35. 35.
    M. Vanderhasten, L. Rabet, and B. Verlinden: Metalurgija, 2005, vol. 11, pp. 195–200.Google Scholar
  36. 36.
    J.A. Hines and K.S. Vecchio: Acta Mater., 1997, vol. 45, pp. 635–49.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Young-Kyun Kim
    • 1
  • Soon-Hong Park
    • 2
  • Yong-Jin Kim
    • 3
  • Bandar Almangour
    • 4
  • Kee-Ahn Lee
    • 1
  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonRepublic of Korea
  2. 2.RISTPohang-siRepublic of Korea
  3. 3.KIMSChangwon-siRepublic of Korea
  4. 4.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations