Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5469–5477 | Cite as

Influence of Casting Parameters on Hooks and Entrapped Inclusions at the Subsurface of Continuous Casting Slabs

  • Xubin Zhang
  • Ying Ren
  • Lifeng Zhang
Article
  • 98 Downloads

Abstract

In the current study, several layers beneath the surface of ultra-low carbon steel continuous casting slabs were inspected to investigate non-metallic inclusions, and then faces vertical to the surface of the slab were etched to reveal hooks. The influence of casting parameters on hooks and the entrapment of inclusions by hooks was investigated. Most > 100 μm inclusions were found to be located within 0.5 to 3.5 mm beneath the surface of the slab. Leaf-like hook, double-hook, and truncated hooks were observed, and bubbles and inclusions were found to be located below hooks. With the increase of the cooling water flow rate in copper plates of the continuous casting mold from 5300 to 5940 L/min, the average depth of hooks at the edge of narrow face increased from 1.37 to 1.53 mm, the number of > 20 μm inclusions increased from 1.6 to 2.6 per 100 mm2, and the average size of > 20 μm inclusions increased from 25.1 to 31.8 μm. With the decrease of the casting temperature from 1573 °C (1846 K) to 1549 °C (1822 K), the average depth of hooks at the edge of narrow face increased from 1.24 to 2.01 mm, the number of > 20 μm inclusions increased from 2.0 to 6.0 per 100 mm2, and the average size of > 20 μm inclusions increased from 26.0 to 27.0 μm. Hence, the surface defect of the rolled steel plate could be improved by lowering the depth of hooks at the subsurface of continuous casting slabs.

Notes

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (Grant Nos. 51725402, 51504020, and 51704018), Beijing Science & Technology Program (No. Z171100002217063), the Fundamental Research Funds for the Central Universites (Grant Nos. FRF-TP-15-001C2, FRF-TP-15-067A1, FRF-TP-17-039A1 and FRF-BD-17-010A), Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM) and the High Quality steel Consortium (HQSC) and Green Process Metallurgy and Modeling (GPM2) at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing (USTB), China.

References

  1. 1.
    E. Takeuchi and J. Brimacombe: Metall. Trans. B, 1984, vol. 15, pp. 493-509.CrossRefGoogle Scholar
  2. 2.
    H. Yamamura, Y. Mizukami and K. Misawa: ISIJ Int., 1996, vol. 36, pp. S223-S26.CrossRefGoogle Scholar
  3. 3.
    J. Sengupta and B.G. Thomas: JOM, 2005, vol. 57, pp. 11-34.Google Scholar
  4. 4.
    E.S. Szekeres: Iron Steel Eng., 1996, vol. 73, pp. 29-37.Google Scholar
  5. 5.
    J. Sengupta, B.G. Thomas, H. Shin, G. Lee and S. Kim: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1597-611.CrossRefGoogle Scholar
  6. 6.
    P.E. Lopez, K.C. Mills, P.D. Lee and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43, pp. 109-22.CrossRefGoogle Scholar
  7. 7.
    H.-J. Shin, G.-G. Lee, S.-M. Kang, S.-H. Kim, W.-Y. Choi, J.-H. Park and B.G. Thomas: Iron Steel Technol., 2005, vol. 2, pp. 56-69.Google Scholar
  8. 8.
    J. Bikerman: Physical Surfaces. New York (NY): Academic Press; 1970.Google Scholar
  9. 9.
    J. Yang, X. Meng, N. Wang and M. Zhu: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1-18.Google Scholar
  10. 10.
    X. Zhang, W. Chen and L. Zhang: Chin. Foundry, 2017, vol. 14, pp. 416-20.CrossRefGoogle Scholar
  11. 11.
    C. Ojeda, J. Sengupta, B.G. Thomas, J. Barco, and J.L. Arana: AISTech 2006, 2006, vol. 1, pp. 1017-28.Google Scholar
  12. 12.
    P.E. Ramirez-Lopez, P.D. Lee and K.C. Mills: ISIJ Int., 2010, vol. 50, pp. 425-34.CrossRefGoogle Scholar
  13. 13.
    J. Sengupta, H.-J. Shin, B. Thomas and S.-H. Kim: Acta Mater., 2006, vol. 54, pp. 1165-73.CrossRefGoogle Scholar
  14. 14.
    H.-J. Shin, S.-H. Kim, B.G. Thomas, G.-G. Lee, J.-M. Park and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635-44.CrossRefGoogle Scholar
  15. 15.
    Z. Lei, C. Chen, X. Jin, Y. Zhong and Z. Ren: ISIJ Int., 2013, vol. 53, pp. 830-37.CrossRefGoogle Scholar
  16. 16.
    T. Miyake, M. Morishita, H. Nakata and M. Kokita: ISIJ Int., 2006, vol. 46, pp. 1817-22.CrossRefGoogle Scholar
  17. 17.
    L. Zhang: J. Iron Steel Res. Int., 2006, vol. 13, pp. 1-8.Google Scholar
  18. 18.
    L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-91.CrossRefGoogle Scholar
  19. 19.
    Q. Zhang, L. Wang and X. Wang: ISIJ Int., 2006, vol. 46, pp. 1421-26.CrossRefGoogle Scholar
  20. 20.
    A. Kumar, S.K. Choudhary and S.K. Ajmani: ISIJ Int., 2012, vol. 52, pp. 2305-07.CrossRefGoogle Scholar
  21. 21.
    T. Emi, H. Nakato, Y. Iida, K. Emoto, R. Tachibana, T. Imai, and H. Bada: Steelmaking Proceedings, Chicago, 1978, pp. 350–60.Google Scholar
  22. 22.
    Y. Awajiya, J. Kubota, and S. Takeuchi: AISTech-Conference Proceedings, 2005, pp. 65.Google Scholar
  23. 23.
    X. Deng, L. Li, X. Wang, Y. Ji, C. Ji and G. Zhu: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 531-43.CrossRefGoogle Scholar
  24. 24.
    H. Esaka, Y. Kuroda, K. Shinozuka and M. Tamura: ISIJ Int., 2004, vol. 44, pp. 682-90.CrossRefGoogle Scholar
  25. 25.
    G.-G. Lee, H.-J. Shin, S.-H. Kim, S.-K. Kim, W.-Y. Choi and B.G. Thomas: Ironmaking Steelmaking, 2009, vol. 36, pp. 39-49.CrossRefGoogle Scholar
  26. 26.
    X. Zhang, L. Zhang, H. Wang, S. Wang, Q. Wang, W. Yang: Chin. J. Eng., 2017, vol. 39, pp. 251-58.Google Scholar
  27. 27.
    Y. Ren, Y. Wang, S. Li, L. Zhang, X. Zuo, S.N. Lekakh and K. Peaslee: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1291-1303.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology Beijing (USTB)BeijingChina

Personalised recommendations