Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5727–5744 | Cite as

Microstructure and Property-Based Statistically Equivalent Representative Volume Elements for Polycrystalline Ni-Based Superalloys Containing Annealing Twins

  • Akbar Bagri
  • George Weber
  • Jean-Charles Stinville
  • William Lenthe
  • Tresa Pollock
  • Christopher Woodward
  • Somnath Ghosh
Article
  • 174 Downloads

Abstract

This paper has three major objectives related to the development of computational micromechanics models of Ni-based superalloys, containing a large number of annealing twins. The first is the development of a robust methodology for generating 3D statistically equivalent virtual polycrystalline microstructures (3D-SEVPM) of Ni-based superalloys. Starting from electron backscattered diffraction (EBSD) images of sections, the method develops distributions and correlation functions of various morphological and crystallographic parameters. To incorporate twins in the parent grain microstructure, the joint probability of the number of twins and parent grain size, and the conditional probability distributions of twin thickness and twin distance are determined. Subsequently, a method is devised for inserting twins following the distribution functions. The overall methodology is validated by successfully comparing various statistics of the virtual microstructures with 3D EBSD data. The second objective is to establish the microstructure-based statistically equivalent representative volume element or M-SERVE that corresponds to the minimum SERVE size at which the statistics of any morphological or crystallographic feature converge to that of the experimental data. The Kolmogorov–Smirnov (KS) test is conducted to assess the convergence of the M-SERVE size. The final objective is to estimate the property-based statistically equivalent RVE or P-SERVE, defined as the smallest SERVE, which should be analyzed to predict effective material properties. The crystal plasticity finite-element model is used to simulate SERVEs, from which the overall material response is computed. Convergence plots of material properties including the yield strength and hardening rate are used to assess the P-SERVE. A smaller P-SERVE compared to the M-SERVE indicates that the characteristic features of twins implemented in determining the M-SERVE are more stringent than those for determining material properties.

Notes

Acknowledgments

This study has been supported through a grant No. FA9550-12-1-0445 to the Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University awarded by the AFOSR/RSL Computational Mathematics Program (Manager Dr. A. Sayir) and AFRL/RX (Monitors Dr. C. Woodward and C. Przybyla). This sponsorship is gratefully acknowledged. Computing support by the Homewood High Performance Compute Cluster (HHPC) and Maryland Advanced Research Computing Center (MARCC) is gratefully acknowledged. The authors gratefully acknowledge the contributions of Dr. C. Torbet to the instrumentation and experimental methodologies.

References

  1. 1.
    D. Furrer, H. Fecht: J. Miner. Met. Mater. Soc. 1999, vol. 51, pp. 14–17.CrossRefGoogle Scholar
  2. 2.
    T. M. Pollock, S. Tin (2006) J. Propuls. Power 22(2), 361–374.CrossRefGoogle Scholar
  3. 3.
    H. U. Hong, I. S. Kim, B. G. Choi, M. Y. Kim, C. Y. Jo (2009) Mater. Sci. Eng. A 517(1), pp. 125–131.CrossRefGoogle Scholar
  4. 4.
    F. Torster, G. Baumeister, J. Albrecht, G. Lutjering, D. Helm, M. A. Daeubler: Mater. Sci. Eng. A 1997, vol. 234-236, pp. 189–192.CrossRefGoogle Scholar
  5. 5.
    J. Coakley, D. Dye, H. Basoalto: Acta Mater. 2011, vol. 59, pp. 863.CrossRefGoogle Scholar
  6. 6.
    L. Kovarik, R. R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, M. J. Mills: . Prog. Mater. Sci. 2009, vol. 54, pp. 839.CrossRefGoogle Scholar
  7. 7.
    T. M. Pollock, A. S. Argon: . Acta Metall. Mater. 1992, vol. 40 (1), pp. 1–30.CrossRefGoogle Scholar
  8. 8.
    D. Nouailhas, G. Cailletaud: Scripta Mater. 1996, vol. 34 (4), pp. 565–571.CrossRefGoogle Scholar
  9. 9.
    E. P. Busso, K. S. Cheong: . Le J. Phys. IV 2001, vol. 11 (PR5), pp. 161–170.Google Scholar
  10. 10.
    D. M. Dimiduk, M. D. Uchic, T. A. Parthasarathy: Acta Mater. 2005, vol. 53 (15), pp. 4065–4077.CrossRefGoogle Scholar
  11. 11.
    Y. S. Choi, T. A. Parthasarathy, D. M. Dimiduk, M. D. Uchic: . Mater. Sci. Eng. A 2005, vol. 397 (1), pp. 69–83.CrossRefGoogle Scholar
  12. 12.
    J. Segurado, R.A. Lebensohn, J. Lorca, C.N. Tomé (2012) Int. J. Plasticity 28(1), 124–140.CrossRefGoogle Scholar
  13. 13.
    M. G. Moghaddam, A. Achuthan, B. A. Bednarcyk, S. M. Arnold, E. J. Pineda: Comput. Mater. Sci. 2015, vol. 96, pp. 44–55.CrossRefGoogle Scholar
  14. 14.
    S. Keshavarz, S. Ghosh: Acta Mater. 2013, vol. 61 (17), pp. 6549 – 6561.CrossRefGoogle Scholar
  15. 15.
    S. Keshavarz, S. Ghosh: Int. J. Solids Struct. 2015, vol. 55, pp. 17–31.CrossRefGoogle Scholar
  16. 16.
    S. Ghosh, G. Weber, S. Keshavarz: Mech. Res. Commun. 2016, vol. 78, pp. 34–46.CrossRefGoogle Scholar
  17. 17.
    S. Keshavarz, S. Ghosh: Philos. Mag. 2015, vol. 95 (24), pp. 2639–2660.CrossRefGoogle Scholar
  18. 18.
    S. Keshavarz, S. Ghosh, A. Reid, S. Langer: Acta Mater. 2016, vol. 114 (1), pp. 106–15.CrossRefGoogle Scholar
  19. 19.
    J. S. Miao, T. M. Pollock, J. W. Jones: Acta Mater. 2012, vol. 60, pp. 2840–2854.CrossRefGoogle Scholar
  20. 20.
    J. C. Stinville, W. C. Lenthe, J. Miao, T. M. Pollock: Acta Mater. 2016, vol. 103, pp. 461–473.CrossRefGoogle Scholar
  21. 21.
    Z. Alam, D. Eastman, M. Jo, K. Hemker: JOM 2016, vol. 68 (11), pp. 2754–2760.CrossRefGoogle Scholar
  22. 22.
    D. Eastman, Z. Alam, G. Weber, P. Shade, W. Uchic, M. Lenthe, T. Pollock, and K. Hemker: Proceedings of the 13th International Symposium on Superalloys, 2016, vol. 1, pp. 813–20.Google Scholar
  23. 23.
    R. Hill: J. Mech. Phys. Solids 1963, vol. 11 (5), pp. 357–72.CrossRefGoogle Scholar
  24. 24.
    S. Torquato: Random Herogeneous Materials. Springer, New York (2002).CrossRefGoogle Scholar
  25. 25.
    R. Pyrz: Compos. Sci. Technol. 1994, vol. 50 (2), pp. 197–208.CrossRefGoogle Scholar
  26. 26.
    S. Swaminathan, S. Ghosh, N. J. Pagano: J. Comput. Mater. 2006, vol. 40 (7), pp. 583–604.CrossRefGoogle Scholar
  27. 27.
    S. Swaminathan, S. Ghosh: J. Comput. Mater. 2006, vol. 40 (7), pp. 605–621.CrossRefGoogle Scholar
  28. 28.
    D. McDowell, S. Ghosh, S. Kalidindi: J. Min. Met. Mater. Soc. (JOM) 2011, vol. 63 (3), pp. 45–51.CrossRefGoogle Scholar
  29. 29.
    S. Ghosh, D. Kubair: J. Mech. Phys. Solids 2016, vol. 95, pp. 1–24.CrossRefGoogle Scholar
  30. 30.
    S. M. Qidwai, D. Turner, S. Niezgoda, A. Lewis, A. Geltmacher, D. J. Rowenhorst, S. R. Kalidindi: Acta Mater. 2012, vol. 60, pp. 52845299.CrossRefGoogle Scholar
  31. 31.
    M. P. Echlin, A. Mottura, M. Wang, P. J. Mignone, D. P. Riley, G. V. Franks, T. M. Pollock: Acta Mater. 2013, vol. 64, pp. 307315.CrossRefGoogle Scholar
  32. 32.
    M. Echlin, W. Lenthe, T. Pollock: Int. Mater. Manuf. Innov. 2014, vol. 3 (1), pp. 21–34.CrossRefGoogle Scholar
  33. 33.
    A. Kumar, L. Nguyen, M. DeGraef, and V. Sundararaghavan (2016) Mod. Simul. Mater. Sci. Eng. 24(3), 1–13.CrossRefGoogle Scholar
  34. 34.
    A. D. Rollett, S. B. Lee, R. Campman, G. S. Rohrer: Annu. Rev. Mater. Res. 2007, vol. 37, pp. 627 – 658.CrossRefGoogle Scholar
  35. 35.
    D. M. Saylor, J. Fridy, B. S. El-Dasher, K.-Y. Jung, A. D. Rollett: Metall. Mater. Trans. A 2004, vol. 35A, pp. 1969–1979.CrossRefGoogle Scholar
  36. 36.
    Y. Jiao, E. Padilla, N. Chawla: Acta Mater. 2013, vol. 61 (9), pp. 3370–3377.CrossRefGoogle Scholar
  37. 37.
    A. Hasanabadi, M. Baniassadi, K. Abrinia, M. Safdari, H. Garmestani: Comput. Mater. Sci. 2016, vol. 111, pp. 107–15.CrossRefGoogle Scholar
  38. 38.
    S. Niezgoda, D. Turner, D. Fullwood, S. Kalidindi: Acta Mater. 2010, vol. 58, pp. 44324445.CrossRefGoogle Scholar
  39. 39.
    V. Sundararaghavan, N. Zabaras: Comput. Mater. Sci. 2005, vol. 32 (2), pp. 223–239.CrossRefGoogle Scholar
  40. 40.
    M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk: Acta Mater. 2008, vol. 56, pp. 1257–1273.CrossRefGoogle Scholar
  41. 41.
    M. Groeber, S. Ghosh, M. D. Uchic, D. M. Dimiduk: Acta Mater. 2008, vol. 56, pp. 1274–1287.CrossRefGoogle Scholar
  42. 42.
    M. A. Groeber, M. A. Jackson (2014) Integr. Mater. Manuf. Innov. 3, 1–17.CrossRefGoogle Scholar
  43. 43.
    D. M. Saylor, A. Morawiec, G. S. Rohrer: Acta Mater. 2003, vol. 51, pp. 3663–3674.CrossRefGoogle Scholar
  44. 44.
    W. M. Williams, C. S. Smith: Trans. Am. Inst. Min. Met. Eng. 1952, vol. 194, pp. 755–765.Google Scholar
  45. 45.
    A. Bagri, J. P. Hanson, J. Lind, P. Kenesei, R. M. Suter, S. Gradeak, M. J. Demkowicz: Metall. Mater. Trans. A 2017, vol. 48A, pp. 354–361.CrossRefGoogle Scholar
  46. 46.
    B. W. Krakauer, D. N. Seidman: J. Chem. Phys. 2000, vol. 8, pp. 27–40.Google Scholar
  47. 47.
    J. Duyster, B. Stockhert: Contrib. Mineral Petrol. 2001, vol. 140, pp. 567–576.CrossRefGoogle Scholar
  48. 48.
    W. Lenthe: Twin related domains in polycrystalline nickel-base superalloys: 3D structure and fatigue, Ph.D. thesis, University of California - Santa Barbara, 2017.Google Scholar
  49. 49.
    D. Zhang, C. D. Eggleton, D. D. Arola: Exp. Mech. 2002, vol. 42 (4), pp. 409–416.CrossRefGoogle Scholar
  50. 50.
    G. Casella, C.P. Robert, and M.T. Wells: Generalized Accept–Reject Sampling Schemes, Lecture Notes: Monograph Series, vol. 45, Institute of Mathematical Statistics, Beachwood, 2004, pp. 342–47.Google Scholar
  51. 51.
    H.-J. Bunge: Texture Analysis in Materials Science: Mathematical Methods. Butterworth-Heinemann, London, 1982.Google Scholar
  52. 52.
    J. K. Mackenzie: Biometrika 1958, vol. 45, pp. 229–240.CrossRefGoogle Scholar
  53. 53.
    D.M. Saylor, S. El Dasher, A.D. Rollett, G.S. Rohrer: Acta Mater. 2004, vol. 52, pp. 3649–3655.CrossRefGoogle Scholar
  54. 54.
    J. Li, S. J. Dillon, G. S. Rohrer: Acta Mater. 2009, vol. 57, pp. 4304–4311.CrossRefGoogle Scholar
  55. 55.
    W.W. Daniel: Kolmogorov–Smirnov One-Sample Test. PWS-Kent, Boston, 1990.Google Scholar
  56. 56.
    C. Allan: Plasticity of nickel base single crystal superalloys, Ph.D. thesis, Massachusetts Institute of Technology, 1995.Google Scholar
  57. 57.
    J. Cheng, A. Shahba, S. Ghosh: Comput. Mech. 2016, vol. 57, pp. 733 – 753.CrossRefGoogle Scholar
  58. 58.
    Simulation Modeling Suite: Simmetrix Inc., 2015.Google Scholar
  59. 59.
    J. C. Stinville, W. C. Lenthe, M. P. Echlin, P. G. Callahan, D. Texier, T. M. Pollock: Int. J. Fract. 2017, vol. 208, pp. 221–240.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Akbar Bagri
    • 1
  • George Weber
    • 1
  • Jean-Charles Stinville
    • 2
  • William Lenthe
    • 2
  • Tresa Pollock
    • 2
  • Christopher Woodward
    • 3
  • Somnath Ghosh
    • 4
  1. 1.Department of Civil EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Materials EngineeringUniversity of California Santa BarbaraSanta BarbaraUSA
  3. 3.Air Force Research Laboratory, Materials & Manufacturing DirectorateWright Patterson Air Force BaseUSA
  4. 4.Departments of Civil, Mechanical and Material science EngineeringJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations