Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5671–5682 | Cite as

Microstructure and Mechanical Properties of In Situ TiB/TiC Particle-Reinforced Ti-5Al-5Mo-5V-3Cr Composites Synthesized by Spark Plasma Sintering

  • Steffen Grützner
  • Lutz Krüger
  • Christian Schimpf
  • Markus Radajewski
  • Ines Schneider
Article
  • 115 Downloads

Abstract

In situ TiB and TiC particle-reinforced titanium matrix composites (TMCs) based on a near-β Ti-5Al-5Mo-5V-3Cr alloy (Ti-5553) reacting chemically with B4C were processed by spark plasma sintering (SPS). The influence of powder milling parameters (low-energy mixing or high-energy milling) on the chemical reaction behavior between the matrix and the B4C particles during sintering was investigated. Taking the microstructure into account, characterization of the particle strengthening effect was carried out under compressive loading conditions. High-energy milling resulted in a significantly higher degree of B4C conversion during sintering. This was attributed to plastic deformation of the initial matrix powder and more homogeneous distribution of the B4C particles accompanied by a significant reduction in cluster formation. In comparison to the unreinforced Ti-5553 matrix, the hardness, stiffness, and compressive strength of the TMCs were successfully increased due to particle reinforcement. The powder milling treatment improved these properties further—a phenomenon directly associated with the higher degree of B4C conversion. Instead of the expected formation of stoichiometric TiC, the formation of nonstoichiometric TiC1−x with x ≈ 0.5 was observed. Molybdenum, vanadium, and chromium formed a solid solution in TiB and TiC1−x. Additionally, the titanium content in the matrix particles was markedly reduced, while the aluminum content roughly doubled.

Notes

Acknowledgments

The authors would like to thank the Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB) for its financial support of this project. Special thanks are due to E. Jentsch, Dr. D. Heger, Dr. S. Decker, and G. Bittner for conducting the compression tests, the EPMA and the SEM investigations as well as the measurement of micro-hardness and indentation moduli.

References

  1. 1.
    1. Z.F. Yang, W.J. Lu, D. Xu, J.N. Qin, and D. Zhang: J. Alloys Compd., 2006, vol. 419, pp. 76-80.CrossRefGoogle Scholar
  2. 2.
    2. L. Yanbin, L. Yong, T. Huiping, W. Bin, and L. Bin: J. Alloys Compd., 2011, vol. 509, pp. 3592-601.CrossRefGoogle Scholar
  3. 3.
    3. S. Gorsse and D. Miracle: Acta Mater., 2003, vol. 51, pp. 2427-42.CrossRefGoogle Scholar
  4. 4.
    4. L.J. Huang, L. Geng, H.Y. Xu, and H.X. Peng: Mat. Sci. Eng. A, 2011, vol. 528, pp. 2859-62.CrossRefGoogle Scholar
  5. 5.
    5. S.C. Tjong and Y.-W. Mai: Compos. Sci. Technol., 2008, vol. 68, pp. 583-601.CrossRefGoogle Scholar
  6. 6.
    6. S. Grützner, L. Krüger, M. Radajewski, and I. Schneider: Metals, 2018, vol. 8, p. 377.CrossRefGoogle Scholar
  7. 7.
    7. S. Li, K. Kondoh, H. Imai, B. Chen, L. Jia, and J. Umeda: Mat. Sci. Eng. A, 2015, vol. 628, pp. 75-83.CrossRefGoogle Scholar
  8. 8.
    8. Z.Y. Ma, S.C. Tjong, and L. Gen: Scripta Mater., 2000, vol. 42, pp. 367-73.CrossRefGoogle Scholar
  9. 9.
    9. W.O. Soboyejo, R.J. Lederich, and S. Sastry: Acta Metall. Mater., 1994, vol. 42, pp. 2579-91.CrossRefGoogle Scholar
  10. 10.
    10. D.R. Ni, L. Geng, J. Zhang, and Z.Z. Zheng: Scripta Mater., 2006, vol. 55, pp. 429-32.CrossRefGoogle Scholar
  11. 11.
    11. H. Feng, Y. Zhou, D. Jia, Q. Meng, and J. Rao: Cryst. Growth Des., 2006, vol. 6, pp. 1626-30.CrossRefGoogle Scholar
  12. 12.
    12. A. Carman, L.C. Zhang, O.M. Ivasishin, D.G. Savvakin, M.V. Matviychuk, and E.V. Pereloma: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1686-93.CrossRefGoogle Scholar
  13. 13.
    K. Srinivasa Vadayar, S. Devaki Rani, and V.V. Bhanu Prasad: Int. J. Theor. Appl. Res. Mech. Eng., 2013, vol. 2, pp. 12-16.Google Scholar
  14. 14.
    14. R. Atri, K. Ravichandran, and S. Jha: Mater. Sci. Eng. A, 1999, vol. 271, pp. 150-59.CrossRefGoogle Scholar
  15. 15.
    15. J. Zhang, W. Ke, W. Ji, Z. Fan, W. Wang, and Z. Fu: Mater. Sci. Eng. A, 2015, vol. 648, pp. 158-63.CrossRefGoogle Scholar
  16. 16.
    16. A. Jimoh, I. Sigalas, and M. Hermann: Mater. Sci. Appl., 2012, vol. 03, pp. 30-35.Google Scholar
  17. 17.
    D. Alman and J. Hawk: Wear, 1999, 225-229, Part 1, pp. 629-39.Google Scholar
  18. 18.
    18. I.Y. Kim, B.J. Choi, Y.J. Kim, and Y.Z. Lee: Wear, 2011, vol. 271, pp. 1962-65.CrossRefGoogle Scholar
  19. 19.
    19. P. Mogilevsky, E.Y. Gutmanas, I. Gotman, and R. Telle: J. Eur. Ceram. Soc., 1995, vol. 15, pp. 527-35.CrossRefGoogle Scholar
  20. 20.
    20. D. Brodkin, S.R. Kalidindi, M.W. Barsoum, and A. Zavaliangos: J. Am. Ceram. Soc., 1996, vol. 79, pp. 1945-52.CrossRefGoogle Scholar
  21. 21.
    21. H. Zhao and Y.-B. Cheng: Ceram. Int., 1999, vol. 25, pp. 353-58.CrossRefGoogle Scholar
  22. 22.
    22. D. Vallauri, I.C. Atías Adrián, and A. Chrysanthou: J. Eur. Ceram. Soc., 2008, vol. 28, pp. 1697-713.CrossRefGoogle Scholar
  23. 23.
    23. K.S. Ravi Chandran, K.B. Panda, and S.S. Sahay: JOM, 2004, vol. 56, pp. 42-48.CrossRefGoogle Scholar
  24. 24.
    24. K. Morsi and V.V. Patel: J. Mater. Sci., 2007, vol. 42, pp. 2037-47.CrossRefGoogle Scholar
  25. 25.
    25. S.R. Nutt and A. Needleman: Scripta Metall., 1987, vol. 21, pp. 705-10.CrossRefGoogle Scholar
  26. 26.
    26. S. Ranganath, T. Roy, and R.S. Mishra: Mater. Sci. Technol., 1996, vol. 12, pp. 219-26.CrossRefGoogle Scholar
  27. 27.
    27. N. Shi and R.J. Arsenault: Scripta Metall. et Mater., 1993, vol. 28, pp. 623-28.CrossRefGoogle Scholar
  28. 28.
    28. R. Young: The Rietveld Method, 2002nd ed., Oxford University Press, Oxford, 2002.Google Scholar
  29. 29.
    29. L. Lutterotti, S. Matthies, and H.R. Wenk: Newsletter of the CPD, 1999, vol. 21, pp. 14-15.Google Scholar
  30. 30.
    S. Veeck, D. Lee, R. Boyer, and R. Briggs: Adv. Mater. Processes, 2004, vol. 162, pp. 47-49.Google Scholar
  31. 31.
    31. G. Tsagareishvili, T. Nakashidze, J. Jobava, G. Lomidze, D. Khulelidze, D. Tsagareishvili, and O. Tsagareishvili: J. Less-Common Metals, 1986, vol. 117, pp. 159-61.CrossRefGoogle Scholar
  32. 32.
    32. P. Ehrlich: Z. Anorg. Chem., 1949, vol. 259, pp. 1-41.CrossRefGoogle Scholar
  33. 33.
    C. R. Hubbard: Standard X-ray Diffraction Powder Patterns: section 18—Data for 58 Substances, National Bureau of Standards Monogr. 25—Sec. 18, 1981.Google Scholar
  34. 34.
    34. Y. Lin, R.H. Zee, and B.A. Chin: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 859-65.CrossRefGoogle Scholar
  35. 35.
    35. N. Zarrinfar, P.H. Shipway, A.R. Kennedy, and A. Saidi: Scripta Mater., 2002, vol. 46, pp. 121-26.CrossRefGoogle Scholar
  36. 36.
    E.K. Storms: Refractory Materilas: Vol. 2. The Refractory Carbides, Academic Press, New York, NY, 1967, pp. 6–8.Google Scholar
  37. 37.
    37. L.A. Tret’yachenko and V.N. Eremenko: Sov. Powder Metall. Met. Ceram., 1966, vol. 5, pp. 581-84.CrossRefGoogle Scholar
  38. 38.
    38. V.N. Eremenko and T.Y. Velikanova: Sov. Powder Metall. Met. Ceram., 1963, vol. 2, pp. 347-52.CrossRefGoogle Scholar
  39. 39.
    39. J.P. Guha and D. Kolar: J. Less-Common Metals, 1973, vol. 31, pp. 337-43.CrossRefGoogle Scholar
  40. 40.
    40. K.J. Kerans, K.S. Mazdiyasni, R. Ruh, and H.A. Lipsitt: J. Am. Ceram. Soc., 1984, vol. 67, pp. 34-38.CrossRefGoogle Scholar
  41. 41.
    41. P.H. Booker, A.O. Kunrath, and M.T. Hepworth: Acta Mater., 1997, vol. 45, pp. 1625-32.CrossRefGoogle Scholar
  42. 42.
    42. A. Wittmann, H. Nowotny, and H. Boller: Monatsh. Chem. Verw. Teile Anderer Wiss., 1960, vol. 91, pp. 608-15.CrossRefGoogle Scholar
  43. 43.
    43. M. Enomoto: J. Phase Equilib., 1992, vol. 13, pp. 641-44.CrossRefGoogle Scholar
  44. 44.
    44. W.A. Zdaniewski: J. Am. Ceram. Soc., 1987, vol. 70, pp. 793-97.CrossRefGoogle Scholar
  45. 45.
    45. L.J. Huang, L. Geng, and H.X. Peng: Mater. Sci. Eng.: A, 2010, vol. 527, pp. 6723-27.CrossRefGoogle Scholar
  46. 46.
    46. M. Guemmaz, A. Mosser, L. Boudoukha, J.J. Grob, D. Raiser, and J.C. Sens: Nucl. Instrum. Methods Phys. Res. Sect. B, 1996, vol. 111, pp. 263-70.CrossRefGoogle Scholar
  47. 47.
    47. S. Hayun, S. Kalabukhov, V. Ezersky, M.P. Dariel, and N. Frage: Ceram. Int., 2010, vol. 36, pp. 451-57.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Steffen Grützner
    • 1
  • Lutz Krüger
    • 1
  • Christian Schimpf
    • 2
  • Markus Radajewski
    • 1
  • Ines Schneider
    • 3
  1. 1.Institute of Materials Engineering, TU Bergakademie FreibergFreibergGermany
  2. 2.Institute of Materials Science, TU Bergakademie FreibergFreibergGermany
  3. 3.Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB)ErdingGermany

Personalised recommendations