Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5904–5910 | Cite as

Mechanism of the Electromigration in Ag-Pd Alloy Bonding Wires

  • Tung-Han Chuang
  • Chun-Hao Chen
Article
  • 48 Downloads

Abstract

The failure mechanism of the electromigration in Ag-Pd bonding wires was investigated through stressing with a current density of 1.23 × 105 A/cm2 at temperatures of 150 °C to 300 °C. It was found that the grains of the wire materials grew rapidly during current stressing for 100 minutes at various temperatures. In contrast, the grain structure remained almost unchanged after storage at these temperatures for 100 minutes without current stressing. The mean-time-to-failure (MTF) for various current-stressed Ag-Pd alloy wires decreased with increases in Pd content. The activation energy for the electromigration of these wire materials was measured, and the results indicated that the main driving force was surface diffusion of Ag.

Notes

Acknowledgments

This study was sponsored by the industrial and academic cooperation programs of Wire Technology Co. LTD. and the National Science Council, Taiwan, under Grant No. NSC-102-2622-E-002-019-CC2 and the Ministry of Science and Technology, Taiwan, under Grant No. MOST-106-2622-E-002-010-CC2.

References

  1. 1.
    C.Y. Liu, C. Chen, and K.N. Tu: J. Appl. Phys., 2000, vol. 88, pp. 5703-5709.CrossRefGoogle Scholar
  2. 2.
    W.H. Lin, A.T. Wu, S.Z. Lin, T.H. Chuang, and K.N. Tu: J. Electron. Mater., 2007, vol. 36, pp. 753-759.CrossRefGoogle Scholar
  3. 3.
    H.J. Lin and T.H. Chuang: Mater. Lett., 2010, vol. 64, Issue 4, pp. 506-509.CrossRefGoogle Scholar
  4. 4.
    Y.C. Chan and D. Yang: Prog. Mater. Sci., 2010, vol. 55, pp. 428-475.CrossRefGoogle Scholar
  5. 5.
    P.K. Tse and T.M. Lach: Proc. 45 th IEEE ECTC, Las Vegas, NV, 1995, pp. 900–05.Google Scholar
  6. 6.
    H.T. Orchard and A.L. Greer: J. Electron. Mater., 2006, vol. 35, pp. 1961-1968.CrossRefGoogle Scholar
  7. 7.
    L. de Schepper, W. de Ceuninck, G. Leken, L. Stals, B. Vanhecke, J. Roggen, E. Beyne, and L. Tielemans: Qual. Reliab. Eng. Int., 1994, vol. 10, Issue 1, pp. 15-26.CrossRefGoogle Scholar
  8. 8.
    B. Krabbenborg: Microelectron. Reliab., 1999, vol. 39, pp. 77-88.CrossRefGoogle Scholar
  9. 9.
    E. Zin, N. Michael, S.H. Kang, K.H. Oh, U. Chul, J.S. Cho, J.T. Moon, and C.U. Kim: Proc. 59th IEEE ECTC, San Diego, CA, 2009, pp. 943–47.Google Scholar
  10. 10.
    V. Koeninger, H.H. Uchida, and E. Fromm: IEEE Trans. Compon. Packag., Manuf. Technol. A. 1995, 18, 835-841.CrossRefGoogle Scholar
  11. 11.
    H.J. Kim, J.Y. Lee, K.W. Paik, K.W. Koh, J. Won, S. Choe, J. Lee, J.T. Moon, and Y.J. Park: IEEE Trans. Compon. Packag. Technol., 2003, vol. 26, Issue 2, pp. 367-374.CrossRefGoogle Scholar
  12. 12.
    P. Chauhan, Z.W. Zhong, and M. Pecht: J. Electron. Mater., 2013, vol. 42, Issue 8, pp. 2415-2434.CrossRefGoogle Scholar
  13. 13.
    T.H. Chuang, H.C. Wang, C.H. Tsai, C.C. Chang, C.H. Chuang, J.D. Lee, and H.H. Tsai: Scr. Mater., 2012, vol. 67, Issue 6, pp. 605-608.CrossRefGoogle Scholar
  14. 14.
    T.H. Chuang, C.C. Chang, C.H. Chuang, J.D. Lee, and H.H. Tsai: IEEE Trans. Compon. Packag. Manuf. Technol. 2013, vol. 3, Issue 1, pp. 3-9.CrossRefGoogle Scholar
  15. 15.
    R. Guo, L. Gao, M. Li, D. Mao, K. Qian, and H. Chiu: Mater. Charact., 2015, vol.110, pp. 44-51.CrossRefGoogle Scholar
  16. 16.
    R.E. Hummel and H.J. Geier: Thin Solid Films, 1975, vol. 25, no. 2, pp. 335-342.CrossRefGoogle Scholar
  17. 17.
    T.L. Alford, Y. Zeng, P. Nguyen, L. Chen, and J.W. Mayer: Microelectron. Eng., 2001, vol.55, pp. 389-395.CrossRefGoogle Scholar
  18. 18.
    M.R. Kaspers, A.M. Bernhart, C.A. Bobisch, and R. Möller: Nanotechnology, 2012, vol. 23, pp. 205706.CrossRefGoogle Scholar
  19. 19.
    H.W. Hsueh, F.Y. Hung, and T.S. Lui: Appl. Phys. Lett., 2017, vol. 110, 031902.CrossRefGoogle Scholar
  20. 20.
    D.G. Pierce and P.G. Brusius: Microelectron. Reliab., 1997, vol. 37, pp. 1053-1072.CrossRefGoogle Scholar
  21. 21.
    T.H. Chuang, H.J. Lin, C.H. Tsai, C.H. Chuang, C.C. Chang, J.D. Lee, and H.H. Tsai: J. Alloys Compd., 2014, vol. 615, pp. 891-898.CrossRefGoogle Scholar
  22. 22.
    J.R. Black: Proc. IEEE, 1969, vol. 57, no. 9, pp. 1587-1594.CrossRefGoogle Scholar
  23. 23.
    A. Chatterjee, T. Bai, F. Edler, C. Tegenkamp, K. Weide-Zaage, and H. Pfnur: J. Phys.: Condens. Matter, 2018, vol. 30, pp. 084002.Google Scholar
  24. 24.
    R.E. Hoffman and D. Turnbull: J. Appl. Phys., 1951, vol. 22, no. 5, pp. 634-639.CrossRefGoogle Scholar
  25. 25.
    N.I. Papanicolaou, G.A. Evangelakis, and G.C. Kallinteris: Comput. Mater. Sci., 1998, vol. 10, pp. 105-110.CrossRefGoogle Scholar
  26. 26.
    T.H. Chuang, H. J. Lin, H. C. Wang, C. H. Chuang, and C. H. Tsai, J. Electron. Mater., 2015, vol. 44, pp. 623-629.CrossRefGoogle Scholar
  27. 27.
    F. C. Campbell: Elements of Metallurgy and Engineering Alloys, 1st ed., ASM International, United States of America, 2008, pp. 265-276.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations