Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5411–5422 | Cite as

Effect of Au Addition on the Microstructure and Properties of Ag-4Pd Bonding Wires

  • Bing-Hau Kuo
  • Du-Cheng Tsai
  • Yen-Lin Huang
  • Po-Chun Hsu
  • Tung-Han Chuang
  • Hsing-Hua Tsai
  • Fuh-Sheng Shieu
Article
  • 50 Downloads

Abstract

Silver-based bonding wires such as Ag-4Pd and Ag-8Au-3Pd have drawn remarkable attention in the packaging industry because they are cheaper and more conductive than Au- and Cu-based wires, respectively. This study aimed to investigate the intermetallic compound (IMC) formation and growth at the bonding interface between Ag-4Pd wire and Al-pads and between Ag-8Au-3Pd wire and Al-pads. The as-bonded and reliability-tested Ag-4Pd/Al and Ag-8Au-3Pd/Al specimens were then investigated by transmission electron microscopy (TEM) and scanning transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy (STEM-EDS). The bonding properties were examined by ball shear and wire pull tests. In the as-bonded state, hexagonal close-packed (HCP) (Ag, Pd)2Al and HCP Ag2Al were formed at the Ag-4Pd/Al interfaces, whereas dual phase consisting of face-centered cubic Ag alloy with HCP precipitates (Ag, Au, Pd)2Al crystals and HCP Ag2Al layers were observed at the Ag-8Au-3Pd/Al interfaces. The IMCs showed significant growth and oxidation during reliability tests at 130 °C and 85 pct relative humidity for 192 hours. Alloying Au in Ag-4Pd wires promoted the growth of the IMC layer and it also enhanced the mechanical properties in the as-bonded material. By contrast, overgrowth of the IMCs in the Ag-8Au-3Pd/Al system induced microcrack formation in bonding and thus degraded the reliability of the material.

Notes

Acknowledgments

This work is supported in part by the Ministry of Education, Taiwan, R.O.C. under the Higher Education Sprout Project and the Wire Technology Co. Ltd., Taichung, Taiwan.

References

  1. 1.
    P. S. Chauhan, A. Choubey, Z. Zhong, M. G. Pecht, Copper wire bonding, Copper Wire Bonding, Springer, 2014.CrossRefGoogle Scholar
  2. 2.
    Z. W. Zhong, Microelectron. Reliab., 2011 vol. 51, pp. 4-12.CrossRefGoogle Scholar
  3. 3.
    P. Liu, L. Tong, J. Wang, L. Shi, H. Tang, Microelectron. Reliab., 2012, vol. 52, pp. 1092-1098.CrossRefGoogle Scholar
  4. 4.
    S. Kaimori, T. Nonaka, A. Mizoguchi, IEEE Trans. Adv. Packag., 2006, vol. 29, pp. 227-231.CrossRefGoogle Scholar
  5. 5.
    A. Pequegnat, H. J. Kim, M. Mayer, Y. Zhou, J. Persic, J. T. Moon, Microelectron. Reliab., 2011, vol. 51 pp. 43-52.CrossRefGoogle Scholar
  6. 6.
    I. Qin, H. Xu, H. Clauberg, R. Cathcart, V.L. Acoff, B. Chylak, and C. Huynh: IEEE Electron. Compon. Technol. Conf. (ECTC), IEEE, 2011, pp. 1489–95.Google Scholar
  7. 7.
    Q. Chen, A. Pagba, D. Reynoso, S. Thomas, and H.J. Toc: IEEE Electron. Packag. Technol. Conf. (EPTC), 2010, pp. 591–96.Google Scholar
  8. 8.
    J. Xi, N. Mendoza, K. Chen, T. Yang, E. Reyes, S. Bezuk, J. Lin, S. Ke, and E. Chen: IEEE Electron. Compon. Technol. Conf. (ECTC), 2015, pp. 1392–95.Google Scholar
  9. 9.
    J.D. Beleran, N. Milanes, G. Mehta, N. Suthiwongsunthorn, R. Rajoo, and C.K. Chong: IEEE Electron. Compon. Technol. Conf. (ECTC), 2014, pp. 490–97.Google Scholar
  10. 10.
    A. Mizushima, S. Kato, H. Abe, N. Sadayori, Y. Endo, K. Yasuhara, J. Chiba, and T. Iwasaki: Int. Symp. Microelectron., Int’l. Microelectron. Assy. Packag. Soc., 2013, pp. 000045–49.Google Scholar
  11. 11.
    J. Tsai, A. Lan, D. Jiang, L.W. Wu, J. Huang, and J. Hong: IEEE Electron. Compon. Technol. Conf. (ECTC), 2014, pp. 1533–38.Google Scholar
  12. 12.
    J.S. Cho, K.A. Yoo, S.J. Hong, J.T. Moon, Y.J. Lee, W. Han, H. Park, S.W. Ha, S.B. Son, S.H. Kang, and K.H. Oh: 2010 Proc. 60th Electron. Compon. Technol. Conf. (ECTC), 2010, pp. 1541–46.Google Scholar
  13. 13.
    R. Guo, T. Hang, D. Mao, M. Li, K. Qian, Z. Lv, H. Chiu, J. Alloys Compd., 2014, vol. 588, pp. 622-627.CrossRefGoogle Scholar
  14. 14.
    R. Guo, L. Gao, D. Mao, M. Li, X. Wang, Z. Lv, H. Chiu, Microelectron. Reliab., 2014, vol. 54, pp.2550-2554.CrossRefGoogle Scholar
  15. 15.
    T. H. Chuang, H. J. Lin, C. H. Chuang, Y. Y. Shiue, F. S. Shieu, Y. L. Huang, P.C. Hsu, J. D. Lee, H. H. Tsai, alloy wire, J. Alloys Compd., 2014. vol. 615, pp. 891-898.CrossRefGoogle Scholar
  16. 16.
    T. H. Chuang, H. C. Wang, C. H. Tsai, C. C. Chang, C. H. Chuang, J. D. Lee, H. H. Tsai, Scripta Mater., 2012, vol. 67, pp. 605-608.CrossRefGoogle Scholar
  17. 17.
    H. Okamoto, J. Phase Equilib. Diff., 2005, vol. 26, pp. 391-393.CrossRefGoogle Scholar
  18. 18.
    N. Noolu, N. Murdeshwar, K. Ely, J. Lippold, W. Baeslack, J. Electron. Mater., 2004, vol. 33, pp. 340-352.CrossRefGoogle Scholar
  19. 19.
    V. Koeninger, H. Uchida, and E. Fromm: IEEE Trans. Compon., Packag. Manuf. Technol. Part A, 1995, vol. 18, pp. 835–41.Google Scholar
  20. 20.
    H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White, Z. Chen, V.L. Acoff, Acta Mater., 2011, vol. 59, pp. 5661-5673.CrossRefGoogle Scholar
  21. 21.
    H. Xu, C. Liu, V. Silberschmidt, S. Pramana, T. White, Z. Chen, Scripta Mater., 2009. vol. 61, pp. 165-168.CrossRefGoogle Scholar
  22. 22.
    T. H. Chuang, C. C. Chang, C. H. Chuang, J. D. Lee, H. H. Tsai, IEEE Trans. Compon. Packag. Manuf. Technol., 2013, vol. 3, pp. 3-9.CrossRefGoogle Scholar
  23. 23.
    K.A. Yoo, C. Uhm, T.J. Kwon, J.S. Cho, and J.T. Moon: IEEE Electron. Packag. Technol. Conf., 2009, pp. 851–57.Google Scholar
  24. 24.
    C. Cheng, H. Hsiao, S. Chu, Y. Shieh, C. Sun, and C. Peng: IEEE Electron. Compon. Technol. Conf., 2013, pp. 1569–73.Google Scholar
  25. 25.
    S. Kumar, H. Kwon, Y.I. Heo, S.H. Kim, J.S. Hwang, J.T. Moon: IEEE Electron. Packag. Technol. Conf. (EPTC), 2013, pp. 15–20.Google Scholar
  26. 26.
    J.S. Cho, H.S. Jeong, J.T. Moon, S.J. Yoo, J.S. Seo, S.M. Lee, S.W. Ha, E.K. Her, S.H. Kang, and K.H. Oh: IEEE Electron. Compon. Technol. Conf, 2009, pp. 1569–73.Google Scholar
  27. 27.
    H. Xu, C. Liu, V. Silberschmidt, S. S. Pramana, T. White, Z. Chen, V. Acoff, Intermetallics, 2011, vol. 19, pp. 1808-1816.CrossRefGoogle Scholar
  28. 28.
    H. Xu, I. Qin, H. Clauberg, B. Chylak, V. L. Acoff, Acta Mater., 2013, vol. 61, pp.79-88.CrossRefGoogle Scholar
  29. 29.
    T. Uno, Microelectron. Reliab., 2011, vol.51, pp. 148-156.CrossRefGoogle Scholar
  30. 30.
    T. Uno, Microelectron. Reliab., 2011, vol. 51, pp. 88-96.CrossRefGoogle Scholar
  31. 31.
    A. Nagasawa, A. Tatsumi, Trans. Jpn. Inst. Met., 1988, vol. 29, pp. 625-633.CrossRefGoogle Scholar
  32. 32.
    R. Pretorius, A. Vredenberg, F. Saris, R. De Reus, J. Appl. Phys., 1991, vol. 70, pp. 3636-3646.CrossRefGoogle Scholar
  33. 33.
    H. Xu, C. Liu, V. V. Silberschmidt, S. Pramana, T.J. White, Z. Chen, M. Sivakumar, V. Acoff, J. Appl. Phys., 2010, vol. 108, pp. 113517.CrossRefGoogle Scholar
  34. 34.
    J. Schleiwies, G. Schmitz, Mater. Sci. Eng. A, 2002, vol. 327, pp. 94-100.CrossRefGoogle Scholar
  35. 35.
    N. Peterson, S. Rothman, Phys. Rev. B, 1970, vol. 1, pp. 3264.CrossRefGoogle Scholar
  36. 36.
    S. Fujikawa, K. I. Hirano, Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 434-441.CrossRefGoogle Scholar
  37. 37.
    A. Prince, Ag-Al-Au Ternary Phase Diagram Evaluation, in: G. Effenberg (Ed.) Ternary Evaluations, MSI, Materials Science International Services GmbH, Stuttgart, 1988.Google Scholar
  38. 38.
    C. Suryanarayana, Nanocrystalline materials, Int. Mater. Rev., 1995, vol. 40, pp. 41-64.CrossRefGoogle Scholar
  39. 39.
    H. Fecht, E. Hellstern, Z. Fu, W. Johnson, Metall. Trans. A, 1990, vol. 21, pp. 2333.CrossRefGoogle Scholar
  40. 40.
    R. Schwarz: in Materials science forum, Trans. Tech. Publ., 1998, pp. 665–74.Google Scholar
  41. 41.
    M. R. Choi, H. G. Kim, T. W. Lee, Y. J. Jeon, Y. K. Ahn, K. W. Koo, Y. C. Jang, S. Y. Park, J. H. Yee, N. K. Cho, I. T. Kang, S. Kim, S. Z. Han, S. H. Lim, Microelectron. Reliab., 2015, vol. 55 pp. 2306-2315.CrossRefGoogle Scholar
  42. 42.
    Y.T. Chiu, T.H. Chiang, P.F. Yang, L. Huang, C.P. Hung, S. Uegaki, and K.L. Lin: Int’l. Conf. Electron. Packag. (ICEP), 2016, pp. 497–501.Google Scholar
  43. 43.
    L.J. Kai, L.Y. Hung, L.W. Wu, M.Y. Chiang, D.S. Jiang, C.M. Huang, and Y.P. Wang, IEEE Electron. Compon. Technol. Conf., 2012, pp. 1163–68.Google Scholar
  44. 44.
    Y.W. Lin, M.C. Su, W.H. Huang, Y.T. Chiu, T.P. Shih, and K.L. Lin, Electron. Packag. Technol. Conf. (EPTC), 2016, pp. 613–19.Google Scholar
  45. 45.
    W. H. Huang, K. L. Lin, Y. W. Lin, Y. K. Cheng, J. Electron. Mater., 2016, vol. 45, pp. 6130-6136.CrossRefGoogle Scholar
  46. 46.
    H.W. Hsueh, F.Y. Hung, T.S. Lui, L.H. Chen, K.J. Chen (2014), Adv. Mater. Sci. Eng., vol. 244, p. 925768.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Bing-Hau Kuo
    • 1
  • Du-Cheng Tsai
    • 1
  • Yen-Lin Huang
    • 1
  • Po-Chun Hsu
    • 2
  • Tung-Han Chuang
    • 3
  • Hsing-Hua Tsai
    • 4
  • Fuh-Sheng Shieu
    • 1
  1. 1.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Department of Materials EngineeringKU LeuvenLeuvenBelgium
  3. 3.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  4. 4.Wire Technology Co. LtdTaichungTaiwan

Personalised recommendations