Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5683–5694 | Cite as

Nanoparticles Reinforcement for the Improved Strength and High-Temperature Wear Resistance of Mn-Cr Steel

  • A. Kračun
  • D. Jenko
  • M. Godec
  • S. V. Savilov
  • G. Prieto
  • W. Tuckart
  • B. Podgornik
Article
  • 65 Downloads

Abstract

Nanotechnologies offer tremendous potential when it comes to modifying the microstructure of steel through the incorporation of nanoparticles. While typical production methods for metal-matrix composites are difficult and expensive, conventional casting routes suffer from inhomogeneity and agglomeration of the added nanoparticles. The aim of this study was to investigate the feasibility and possibilities of introducing nanosized particles into a steel matrix through a conventional casting process and to determine the effect of different nanoparticles and methods of incorporation on the strength, toughness, and high-temperature wear resistance of martensitic steel. The results show that also in the case of a conventional casting process, it is possible to obtain a homogeneous distribution of nanoparticles in the metal matrix, resulting in improved strength, maintained toughness, and up to five times better high-temperature wear resistance of the Mn-Cr steel. However, the rate of improvement greatly depends on the method and type of nanoparticles incorporation. The most promising results were observed for the combination of carbon nanotubes, oxide nanoparticles, and dispersant, sealed in a steel tube, with the dispersant providing the uniform distribution, the carbon nanotubes delivering the good toughness and the adhesive wear properties, and the oxide nanoparticles ensuring oxidation and abrasive wear resistance.

Notes

Acknowledgments

The authors acknowledge the financial support from the Slovenian Research Agency (Research Core Funding Nos. P2-0050 and P2-0231, applied research project L2-7599, as well as BI-AR/15-017-007 and BI-RU/14-15-012 bilateral projects). The authors would also like to acknowledge help from M. Torkar and F. Tehovnik from the Institute of Metals and Technology for the melting and casting, A. Egorov, S. Chernyak, and R. Novotortsev from M.V. Lomonosov Moscow State University for preparing the carbon nanotubes and their composites with Al2O3, as well as T. Ahačič, S. Šolič, and M. Pečar from Institute of Metals and Technology for mechanical testing, and SEM and AES analysis.

References

  1. 1.
    [1] R. Kuziak, R. Kawalla and S. Waengler: Arch. Civ. Mech. Eng., 2008, vol. 8, pp. 103–117.CrossRefGoogle Scholar
  2. 2.
    [2] G. Jha, S. Das, S Sinha, A. Lodh and A. Haldar: Mater. Sci. Eng. A-Struct., 2013, vol. 561, pp. 394–402.CrossRefGoogle Scholar
  3. 3.
    [3] W.J. Nam, C.S. Lee and D.Y. Ban: Mater. Sci. Eng. A-Struct., 2000, vol. 289, pp. 8–17.CrossRefGoogle Scholar
  4. 4.
    [4] P.K. Mallick: Materials, Design and Manufacturing for Lightweight Vehicles, Woodhead Publishing Limited, Cambridge, 2010.CrossRefGoogle Scholar
  5. 5.
    [5] F. Ozturk, A. Polat, S. Toros and R.C. Picu: J. Iron Steel Res. Int., 2013, vol. 20, pp. 68–74.CrossRefGoogle Scholar
  6. 6.
    [6] B. Podgornik, M. Torkar, J. Burja, M. Godec and B. Senčič: Mater. Sci. Eng. A-Struct., 2015, vol. 638, pp. 183–189.CrossRefGoogle Scholar
  7. 7.
    [7] B. Podgornik, V. Leskovšek, M. Godec and B. Senčič: Mater. Sci. Eng. A-Struct., 2014, vol. 599, pp. 81–86.CrossRefGoogle Scholar
  8. 8.
    [8] B. Nie, Z. Zhang, Z. Zhao and Q. Zhong: Mater. Design., 2013, vol. 50, pp. 503–508.CrossRefGoogle Scholar
  9. 9.
    [9] Chao-lei Zhang, Ya-zheng Liu, Chao Jiang and Jin-fu Xiao: J. Iron Steel Res. Int., 2011, vol. 18, pp. 49–53.CrossRefGoogle Scholar
  10. 10.
    [10] Chao-lei Zhang, Ya-zheng Liu, Le-yu Zhou and Chao Jiang: J. Iron Steel Res. Int., 2012, vol. 19, pp. 47–51.CrossRefGoogle Scholar
  11. 11.
    [11] W. Zhou, H. Guo, Z. Xie, X. Wang and C. Shang: Mater. Sci. Eng. A-Struct., 2013, vol. 587, pp. 365–371.CrossRefGoogle Scholar
  12. 12.
    Barani A. A., F. Li, P. Romano, D. Ponge and D. Raabe: Mater. Sci. Eng. A, 2007, vol. 463, pp. 138–146.CrossRefGoogle Scholar
  13. 13.
    [13] E. Pagounis and V.K. Lindroos: Mater. Sci. Eng. A-Struct., 1998, vol. 246, pp. 221–234.CrossRefGoogle Scholar
  14. 14.
    [14] I.A. Ibrahim, F.A. Mohamed and E.J. Lavernia: J. Mater. Sci., 1991, vol. 26, pp. 1137–1156.CrossRefGoogle Scholar
  15. 15.
    [15] D.J. Lloyd: Int. Mater. Rev., 1994, vol. 39, pp. 1–23.CrossRefGoogle Scholar
  16. 16.
    [16] A. Luo: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2445–2455.CrossRefGoogle Scholar
  17. 17.
    [17] K.U. Kainer: Metal matrix composites. Custom-made materials for automotive and aerospace engineering, Wiley-VCH Verlag GmbH, Weinheim, 2003.Google Scholar
  18. 18.
    [18] F. Akhtar: Can. Metall. Quart., 2014, vol. 53, pp. 253–263.CrossRefGoogle Scholar
  19. 19.
    [19] F. Akhtar, S. Guo, J. Askari and J. Tian: J. Univ. Sci. Technol. B, 2007, vol. 14, pp. 89–93.CrossRefGoogle Scholar
  20. 20.
    [20] S.C. Tjong and K.C. Lau: Mater. Lett., 1999, vol. 41, pp. 153–158.CrossRefGoogle Scholar
  21. 21.
    [21] I. Sulima, P. Klimczyk and P. Malczewski: Acta Metall. Sin.-Engl., 2014, vol. 27, pp. 12–18.CrossRefGoogle Scholar
  22. 22.
    [22] X.W. Zeng, W.G. Zhang, N. Wei, R.P. Liu and M.Z. Ma: Mater. Sci. Eng. A-Struct., 2007, vol. 443, pp. 224–228.CrossRefGoogle Scholar
  23. 23.
    [23] Q.C. Jiang, X.L. Li and H.Y. Wang: Scripta Mater., 2003, vol. 48, pp. 713–717.CrossRefGoogle Scholar
  24. 24.
    [24] Dongshuai Zhou, Feng Qiu, Huiyuan Wang and Qichuan Jiang: Acta Metall. Sin.-Engl., 2014, vol. 27, pp. 798–805.CrossRefGoogle Scholar
  25. 25.
    [25] M. Bahrami, K. Dehghani and M.K.B. Givi: Mater. Design., 2014, vol. 53, pp. 217–225.CrossRefGoogle Scholar
  26. 26.
    [26] D.S. Zhou, F. Qiu and Q.C. Jiang: Mater. Sci. Eng. A-Struct., 2014, vol. 596, pp. 98–102.CrossRefGoogle Scholar
  27. 27.
    [27] S. Chen, P. Seda, M. Krugla and A. Rijkenberg: Mat. Sci. Tech., 2016, vol. 32, pp. 992–1003.CrossRefGoogle Scholar
  28. 28.
    [28] K.I. Parashivamurthy, M.N. Chandrasekharaiah, P. Sampathkumaran and S. Seetharamu: Mater. Manuf. Process., 2006, vol. 21, pp. 473–478.CrossRefGoogle Scholar
  29. 29.
    [29] J. Hashim, L. Looney and M.S.J. Hashmi: J. Mater. Process. Tech., 1999, vol. 92–93, pp. 1–7CrossRefGoogle Scholar
  30. 30.
    [30] Jin-Ju Park, Sung-Mo Hong, Eun-Kwang Park, Kyeong-Yeol Kim, Min-Ku Lee and Chang-Kyu Rhee: Mater. Sci. Eng. A-Struct., 2014, vol. 613, pp. 217–223.CrossRefGoogle Scholar
  31. 31.
    [31] Sang-Hoon Lee, Sung-Mo Hong, Byoung-Sun Han, Jin-Ju Park, Jong-Keuk Lee, Jung-Gu Lee, Min-Ku Lee and Chang-Kyu Rhee: J. Nanosci. Nanotechno., 2010, vol. 10, pp. 258–262.CrossRefGoogle Scholar
  32. 32.
    [32] R. Lazarova, R.H. Petrov, V. Gaydarova, A. Davidkov, A. Alexeev, M. Manchev and V. Manolov: Mater. Design., 2011, vol. 32, pp. 2734–2741.CrossRefGoogle Scholar
  33. 33.
    [33] S.A. Chernyak, A.S. Ivanov, N.E. Strokova, K.I. Maslakov, S.V. Savilov and V.V. Lunin: J. Phys. Chem. C, 2016, vol. 120, pp. 17465–17474.CrossRefGoogle Scholar
  34. 34.
    [34] S.A. Chernyak, E.V. Suslova, A.S. Ivanov, A.V. Egorov, K.I. Maslakov, S.V. Savilov and V.V. Lunin: Appl. Catal. A-Gen., 2016, vol. 523, pp. 221–229.CrossRefGoogle Scholar
  35. 35.
    [35] F. Velasco, W.M. Lima, N. Anton, J. Abenojar and J.M. Torralba: Tribol. Int., 2003, vol. 36, pp. 547–551.CrossRefGoogle Scholar
  36. 36.
    [36] B. Podgornik, B. Zuzek and V. Leskovsek: Mater. Perform. Charact., 2014, vol. 3, pp. 87–103.Google Scholar
  37. 37.
    [37] E.E. Gdoutos: Fracture Mechanics Criteria and Applications, Kluwer Academic Publishers, London, 1990.CrossRefGoogle Scholar
  38. 38.
    [38] Z. Amondarain, M. Arribas, J.L. Arana and G.A. Lopez: Mater. Trans., 2013, vol. 54, pp. 1867–1876.CrossRefGoogle Scholar
  39. 39.
    [39] B. Podgornik, V. Leskovšek: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5694–5702.CrossRefGoogle Scholar
  40. 40.
    M. Fernández-Garcia and J.A. Rodriguez: in Encyclopedia of Inorganic Chemistry, Wiley, 2009.  https://doi.org/10.1002/0470862106.ia377.

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • A. Kračun
    • 1
  • D. Jenko
    • 1
  • M. Godec
    • 1
  • S. V. Savilov
    • 2
  • G. Prieto
    • 3
  • W. Tuckart
    • 3
  • B. Podgornik
    • 1
  1. 1.Institute of Metals and TechnologyLjubljanaSlovenia
  2. 2.M.V. Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Universidad Nacional del SurBahía BlancaArgentina

Personalised recommendations