Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 11, pp 5871–5877 | Cite as

Effect of Copper Addition on the Cluster Formation Behavior of Al-Mg-Si, Al-Zn-Mg, and Al-Mg-Ge in the Natural Aging

  • Daichi Hatakeyama
  • Katsuhiko Nishimura
  • Kenji Matsuda
  • Takahiro Namiki
  • Seungwon Lee
  • Norio Nunomura
  • Tetsuo Aida
  • Teiichiro Matsuzaki
  • Randi Holmestad
  • Sigurd Wenner
  • Calin D. Marioara
Article

Abstract

The time-dependent resistivity of Al-Mg-Si(-Cu), Al-Zn-Mg(-Cu), and Al-Mg-Ge(-Cu) alloys are studied over a range of constant temperatures between 255 K and 320 K. The resistivity vs time curves for the samples show three temperature stages associated with solute element–vacancy clustering. Cu addition was found to make the stage transition time longer for the studied samples. Arrhenius plots of the transition time vs temperature provide the activation energy (Q) of clustering from stage I to II and II to III. While the Cu addition increased the Q(I to II) values of Al-1.0 pct Mg2Si-0.20 pct Cu and Al-2.68 pct Zn-3.20 pct Mg-0.20 pct Cu, it was found that the added Cu decreased the Q(I to II) value of Al-0.44 pct Mg-0.19Ge-0.18 pct Cu. The Q(II to III) values of Al-1.0 pct Mg2Si and Al-2.68 pct Zn-3.20 pct Mg were slightly decreased by the Cu addition. The different effect of added Cu on the Q values is discussed in terms of diffusivity and binding energy between vacancies and solute elements.

Notes

Acknowledgments

This study has been supported by the funds from Center for Advanced Materials Research and International Collaboration, University of Toyama, The Norwegian-Japanese Aluminium Alloy Research and Education Collaboration (INTPART), Project Number 249698, and The Japan Institute of Light Metals.

Supplementary material

11661_2018_4832_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)
11661_2018_4832_MOESM2_ESM.tif (546 kb)
Supplementary material 2 (TIFF 545 kb)

References

  1. 1.
    M. Werinos, H. Antrekowitsch, T. Ebner, R. Prillhofer, P.J. Uggowitzer, and S. Pogatscher: Mater. Des., 2016, vol. 107, pp. 257-268.CrossRefGoogle Scholar
  2. 2.
    S.K. Maloney, K Hono, I.J. Polmear, and S.P. Ringer: Micron,2001, vol. 32, pp. 741-747CrossRefGoogle Scholar
  3. 3.
    Y. Weng, Z. Jia, L. Ding, Y. Pan, Y. Liu, and Q. Liu: J. Alloy. Compd., 2017, vol. 695, pp. 2444-2452.CrossRefGoogle Scholar
  4. 4.
    Q. Xiao, H. Liu, D. Yi, D. Yin, Y. Chen, Y. Zhang, and B. Wang: J. Alloy. Compd., 2017, vol. 695, pp. 1005-1013.CrossRefGoogle Scholar
  5. 5.
    K. Matsuda, A. Kawai, K. Watanabe, S. Lee, C. D. Marioara, S. Wenner, K. Nishimura, T. Matsuzaki, N. Nunomura, T. Sato, R. Holmestad, and S. Ikeno: Mater. Trans. 2017, vol. 58, pp. 167-175CrossRefGoogle Scholar
  6. 6.
    G.Tao, C.Liu, J.Chen, Y.Lai, P.Ma and L.Liu:Mater. Sci. Eng., A, 2015, vol. 642, pp. 241-248.CrossRefGoogle Scholar
  7. 7.
    M. Murayama and K. Hono: Acta Mater., 1999, vol. 47, pp. 1537-1548.CrossRefGoogle Scholar
  8. 8.
    G. Sha and A. Cerezo: Acta Mater., 2004, vol. 52, pp. 4503-4516.CrossRefGoogle Scholar
  9. 9.
    A. Serizawa, S. Hirosawa, and T. Sato: Metall. Mater. Trans. A, 2008, vol. 39, pp. 243-251.CrossRefGoogle Scholar
  10. 10.
    M. W. Zandbergen, A. Cerezo, and G. D. W. Smith: Acta Mater., 2015, vol. 101, pp. 149-158.CrossRefGoogle Scholar
  11. 11.
    Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato: Scr. Mater., 2016, vol. 116, pp. 82-86.CrossRefGoogle Scholar
  12. 12.
    Z. Jia L. Ding L. Cao, R. Sanders, S. Li, and Q. Liu: Metall. Mater. Trans. A, 2017, vol. 48, pp. 459-473.CrossRefGoogle Scholar
  13. 13.
    C.S.T. Chang and J. Banhart: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1960-1964.CrossRefGoogle Scholar
  14. 14.
    J.H. Kim, E. Kobayashi, and T. Sato: Mater. Trans., 2011, vol. 52, pp. 906-913.CrossRefGoogle Scholar
  15. 15.
    L. Ding, Z. Jia, Y. Liu, Y. Weng, and Q. Liu: J. Alloy. Compd., 2016, vol. 688, pp. 362-367.CrossRefGoogle Scholar
  16. 16.
    M. Liu, B. Klobes, and J. Banhart: Mater. Sci., 2016, vol. 51, pp. 7754-7767.CrossRefGoogle Scholar
  17. 17.
    J. Banhart, M.D. H.Lay, C.S.T. Chang, and A.J. Hill: Phys. Rev. B, 2011, vol. 83, pp. 014101-014113.CrossRefGoogle Scholar
  18. 18.
    M.D.H. Lay, H.S. Zurob, C.R. Hutchinson, T.J. Hill, A.J. Hill: Metall. Mater. Trans. A, 2012, vol. 43, pp. 4507-4513.CrossRefGoogle Scholar
  19. 19.
    S. Wenner, R. Holmestad, K. Matsuda, K. Nishimura, T. Matsuzaki, D. Tomono, F.L. Platt, C.D. Marioara: Phys. Rev. B, 2012, vol. 86, pp. 014201-014207.CrossRefGoogle Scholar
  20. 20.
    S. Wenner, K. Nishimura, K. Matsuda, T. Matsuzaki, D. Tomono, F.L. Platt, C.D. Marioara, and R. Holmestad: Acta Mater., 2013, vol. 61, pp. 6082-6092.CrossRefGoogle Scholar
  21. 21.
    K. Nishimura, K. Matsuda, R. Komaki, N. Nunomura, S. Wenner, R. Holmestad, T. Matsuzaki, I. Watanabe, F.L. Pratt, and C.D. Marioara: J. Phys. Conf. Ser., 2014, vol. 551, 012031.CrossRefGoogle Scholar
  22. 22.
    J. Banhart, C.S.T. Chang, Z. Liang, N. Wanderka, M.D. H.Lay, and A.J. Hill: Adv. Eng. Mater., 2010, vol. 12, pp. 559-571.CrossRefGoogle Scholar
  23. 23.
    H. Seyedrezai, D. Grebennikov, P. Mascher, and H. S. Zurob: Mater. Sci. Eng., 2009, vol. 525, pp. 186-191.CrossRefGoogle Scholar
  24. 24.
    J.H. Kim, H. Tezuka, E. Kobayashi, and T. Sato: Kor. J. Mater. Res., 2012, vol. 22, pp. 329-334.CrossRefGoogle Scholar
  25. 25.
    M. Liu and J. Banhart: Mater. Sci. Eng. A, 2016, vol. 658, pp. 238-245.CrossRefGoogle Scholar
  26. 26.
    D. Hatakeyama, K. Nishimura, T. Namiki, K. Matsuda, N. Nunomura and T. Matsuzaki: Jpn. Inst. Light Met., 2017, vol. 67, pp. 168-172CrossRefGoogle Scholar
  27. 27.
    P. Lang, Y.V. Shan, E. Kozeschnik: Mater. Sci. Forum, 2014, 794: 963-970.CrossRefGoogle Scholar
  28. 28.
    P. Lang, T. Weisz, M.R. Ahmadi, E. Povoden-Karadeniz, A. Falahati, E. Kozeschnik: Adv. Mater. Res., 2014, vol. 922, pp. 406-411.CrossRefGoogle Scholar
  29. 29.
    C. Worverton: Acta Mater., 2007, vol. 55, pp. 5867-5872.CrossRefGoogle Scholar
  30. 30.
    Y. Du, Y. A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, F.-Y. Xie: Mater. Sci. Eng. A 2003, vol. 363, pp. 140-151CrossRefGoogle Scholar
  31. 31.
    H.S. Zurob and H. Seyedrezai: Scr. Mater., 2009, vol. 61, pp. 141-144.CrossRefGoogle Scholar
  32. 32.
    C. S. T Chang, Z. Liang, E. Schmidt, and J. Banhart: Int. J. Mat Res. 2012, vol. 103, pp. 955-961CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Daichi Hatakeyama
    • 1
  • Katsuhiko Nishimura
    • 1
  • Kenji Matsuda
    • 1
  • Takahiro Namiki
    • 1
  • Seungwon Lee
    • 1
  • Norio Nunomura
    • 1
  • Tetsuo Aida
    • 1
  • Teiichiro Matsuzaki
    • 2
  • Randi Holmestad
    • 3
  • Sigurd Wenner
    • 4
  • Calin D. Marioara
    • 4
  1. 1.Graduate School of Science and EngineeringUniversity of ToyamaGofukuJapan
  2. 2.RIKEN Nishina Center for Accelerator Based Science, RIKENWakoJapan
  3. 3.Department of PhysicsNTNUTrondheimNorway
  4. 4.Materials and Chemistry SINTEFTrondheimNorway

Personalised recommendations