Advertisement

Towards a Deeper Understanding of the Anticorrosive Properties of Hydrazine Derivatives in Acid Medium: Experimental, DFT and MD Simulation Assessment

Article
  • 4 Downloads

Abstract

The corrosion inhibition properties of two compounds namely, 1,2-dibenzylidenehydrazine (C1) and 1,2-bis(1-phenylethylidene)hydrazine (C2) for mild steel (MS) in 1.0 M HCl were studied by using weight loss, electrochemical techniques, density functional theory (DFT), and molecular dynamic (MD) simulations. Experimental results show that both C1 and C2 behave as mixed-type inhibitors. Both inhibitors showed efficient binding with metal surface. With C1 exhibiting the highest inhibition efficiency, resulting in low double layer capacitance and a high polarization resistance. The mechanism of inhibition action of the studied compounds was discussed in the light of the DFT and MD simulations studies. MD simulation revealed a nearly flat configuration for the C1 molecule on the metal surface, with more negative interaction energy in comparison to C2. Theoretical results are in line with the experimental results.

Notes

Acknowledgment

The authors are grateful to Dr. Diana S. Jodeh, Johns Hopkins University, for English editing of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11661_2018_4828_MOESM1_ESM.docx (154 kb)
Supplementary material 1 (DOCX 153 kb)

References

  1. 1.
    1 M. Yadav, R.R. Sinha, T.K. Sarkar, and N. Tiwari: J. Adhes. Sci. Technol., 2015, vol. 29, pp. 1690–713.CrossRefGoogle Scholar
  2. 2.
    2 M. Hassoune, A. Bezzar, L. Sail, and F. Ghomari: J. Adhes. Sci. Technol., 2018, vol. 32, pp. 68–90.CrossRefGoogle Scholar
  3. 3.
    3 M. Nasibi, M. Mohammady, E. Ghasemi, A. Ashrafi, D. Zaarei, and G. Rashed: J. Adhes. Sci. Technol., 2013, vol. 27, pp. 1873–85.CrossRefGoogle Scholar
  4. 4.
    4 V. Srivastava, J. Haque, C. Verma, P. Singh, H. Lgaz, R. Salghi, and M.A. Quraishi: J. Mol. Liq., 2017, vol. 244, pp. 340–52.CrossRefGoogle Scholar
  5. 5.
    5 R. Kumar, S. Chahal, S. Kumar, S. Lata, H. Lgaz, R. Salghi, and S. Jodeh: J. Mol. Liq., 2017, vol. 243, pp. 439–50.CrossRefGoogle Scholar
  6. 6.
    6 J. Aljourani, K. Raeissi, and M. Golozar: Corros. Sci., 2009, vol. 51, pp. 1836–43.CrossRefGoogle Scholar
  7. 7.
    7 E. Machnikova, K.H. Whitmire, and N. Hackerman: Electrochimica Acta, 2008, vol. 53, pp. 6024–32.CrossRefGoogle Scholar
  8. 8.
    8 S. Jyothi and J. Ravichandran: J. Adhes. Sci. Technol., 2017, vol. 31, pp. 2285–99.CrossRefGoogle Scholar
  9. 9.
    9 V. Eswaramoorthi, S. Jagadeesan, S. Palanisamy, P. Kandhasamy, and S. Chitra: J. Adhes. Sci. Technol., 2016, vol. 30, pp. 468–93.CrossRefGoogle Scholar
  10. 10.
    10 H. Gerengi, H.I. Ugras, M.M. Solomon, S.A. Umoren, M. Kurtay, and N. Atar: J. Adhes. Sci. Technol., 2016, vol. 30, pp. 2383–403.CrossRefGoogle Scholar
  11. 11.
    O. Olivares-Xometl, E. Álvarez-Álvarez, N.V. Likhanova, I.V. Lijanova, R.E. Hernández-Ramírez, P. Arellanes-Lozada, and J.L. Varela-Caselis: J. Adhes. Sci. Technol., 2017, pp. 1–22.Google Scholar
  12. 12.
    12 H. Lgaz, R. Salghi, K. Subrahmanya Bhat, A. Chaouiki, Shubhalaxmi, and S. Jodeh: J. Mol. Liq., 2017, vol. 244, pp. 154–68.CrossRefGoogle Scholar
  13. 13.
    13 B. Delley: J. Chem. Phys., 1990, vol. 92, pp. 508–17.CrossRefGoogle Scholar
  14. 14.
    14 B. Delley: J. Chem. Phys., 2000, vol. 113, pp. 7756–64.CrossRefGoogle Scholar
  15. 15.
    Materials Studio: Revision 6.0, Accelrys Inc., San Diego, USA, 2013.Google Scholar
  16. 16.
    16 R.S. Mulliken: J. Chem. Phys., 1955, vol. 23, pp. 1833–40.CrossRefGoogle Scholar
  17. 17.
    17 M.J. Dewar and W. Thiel: J. Am. Chem. Soc., 1977, vol. 99, pp. 4899–907.CrossRefGoogle Scholar
  18. 18.
    18 R.G. Pearson: Coord. Chem. Rev., 1990, vol. 100, pp. 403–25.CrossRefGoogle Scholar
  19. 19.
    19 S. Martinez: Mater. Chem. Phys., 2003, vol. 77, pp. 97–102.CrossRefGoogle Scholar
  20. 20.
    20 R.G. Pearson: J. Org. Chem., 1989, vol. 54, pp. 1423–1430.CrossRefGoogle Scholar
  21. 21.
    21 R.G. Pearson: Inorg. Chem., 1988, vol. 27, pp. 734–740.CrossRefGoogle Scholar
  22. 22.
    23 A. Kokalj: Chem. Phys., 2012, vol. 393, pp. 1–12.CrossRefGoogle Scholar
  23. 23.
    24 R.G. Parr and W. Yang: J. Am. Chem. Soc., 1984, vol. 106, pp. 4049–50.CrossRefGoogle Scholar
  24. 24.
    25 R.R. Contreras, P. Fuentealba, M. Galván, and P. Pérez: Chem. Phys. Lett., 1999, vol. 304, pp. 405–13.CrossRefGoogle Scholar
  25. 25.
    26 S.W. Bunte and H. Sun: J. Phys. Chem. B, 2000, vol. 104, pp. 2477–89.CrossRefGoogle Scholar
  26. 26.
    27 L. Guo, I.B. Obot, X. Zheng, X. Shen, Y. Qiang, S. Kaya, and C. Kaya: Appl. Surf. Sci., 2017, vol. 406, pp. 301–6.CrossRefGoogle Scholar
  27. 27.
    28 H. Sun: J. Phys. Chem. B, 1998, vol. 102, pp. 7338–64.CrossRefGoogle Scholar
  28. 28.
    29 Z. Zhang, N.C. Tian, X.D. Huang, W. Shang, and L. Wu: RSC Adv., 2016, vol. 6, pp. 22250–68.CrossRefGoogle Scholar
  29. 29.
    A. Bouoidina, F. El-Hajjaji, A. Abdellaoui, Z. Rais, M.F. Baba, M. Chaouch, O. Karzazi, A. Lahkimi, and M. Taleb: J. Mater. Environ. Sci., 2017, vol. 8, pp. 1328–39.Google Scholar
  30. 30.
    31 T. Zhang, S. Cao, H. Quan, Z. Huang, and S. Xu: Res. Chem. Intermed., 2015, vol. 41, pp. 2709–24.CrossRefGoogle Scholar
  31. 31.
    32 H.B. Ouici, O. Benali, Y. Harek, L. Larabi, B. Hammouti, and A. Guendouzi: Res. Chem. Intermed., 2013, vol. 39, pp. 2777–93.CrossRefGoogle Scholar
  32. 32.
    33 O. Benali, C. Selles, and R. Salghi: Res. Chem. Intermed., 2014, vol. 40, pp. 259–68.CrossRefGoogle Scholar
  33. 33.
    34 M. Abdulwahab, O.S.I. Fayomi, A.P.I. Popoola, F. Asuke, and L.E. Umoru: Res. Chem. Intermed., 2014, vol. 40, pp. 1115–23.CrossRefGoogle Scholar
  34. 34.
    35 R.T. Loto, C.A. Loto, and T. Fedotova: Res. Chem. Intermed., 2014, vol. 40, pp. 1501–16.CrossRefGoogle Scholar
  35. 35.
    36 Y. Sasikumar, A.S. Adekunle, L.O. Olasunkanmi, I. Bahadur, R. Baskar, M.M. Kabanda, I.B. Obot, and E.E. Ebenso: J. Mol. Liq., 2015, vol. 211, pp. 105–118.CrossRefGoogle Scholar
  36. 36.
    37 H. Lgaz, R. Salghi, S. Jodeh, and B. Hammouti: J. Mol. Liq., 2017, vol. 225, pp. 271–80.CrossRefGoogle Scholar
  37. 37.
    38 A. Popova, E. Sokolova, S. Raicheva, and M. Christov: Corros. Sci., 2003, vol. 45, pp. 33–58.CrossRefGoogle Scholar
  38. 38.
    39 F. Bentiss, M. Lebrini, M. Lagrenée, M. Traisnel, A. Elfarouk, and H. Vezin: Electrochimica Acta, 2007, vol. 52, pp. 6865–6872.CrossRefGoogle Scholar
  39. 39.
    40 B. Sanyal: Prog. Org. Coat., 1981, vol. 9, pp. 165–236.CrossRefGoogle Scholar
  40. 40.
    41 C. Verma, M.A. Quraishi, and A. Singh: J. Mol. Liq., 2015, vol. 212, pp. 804–12.CrossRefGoogle Scholar
  41. 41.
    42 J. Flis and T. Zakroczymski: J. Electrochem. Soc., 1996, vol. 143, pp. 2458–64.CrossRefGoogle Scholar
  42. 42.
    K. Azzaoui, E. Mejdoubi, S. Jodeh, A. Lamhamdi, E. Rodriguez-Castellón, M. Algarra, A. Zarrouk, A. Errich, R. Salghi, and H. Lgaz: Corros. Sci., 2017, vol. 129, pp. 70–81.CrossRefGoogle Scholar
  43. 43.
    44 M. Behpour, S. Ghoreishi, N. Soltani, M. Salavati-Niasari, M. Hamadanian, and A. Gandomi: Corros. Sci., 2008, vol. 50, pp. 2172–81.CrossRefGoogle Scholar
  44. 44.
    45 M. Sikine, H. Elmsellem, Y. Kandri Rodi, H. Steli, A. Aouniti, B. Hammouti, Y. Ouzidan, F. Ouazzani Chahdi, M. Bourass, and E.M. Essassi: J. Mater. Environ. Sci., 2016, vol. 7, pp. 4620–32.Google Scholar
  45. 45.
    46 S. Lahmidi, A. Elyoussfi, A. Dafali, H. Elmsellem, N.K. Sebbar, L. El Ouasif, A.E. Jilalat, B. El Mahi, E.M. Essassi, I. Abdel-Rahman, and B. Hammouti: J. Mater. Environ. Sci., 2017, vol. 8, pp. 225–37.Google Scholar
  46. 46.
    47 B. Dogru Mert, M.E. Mert, G. Kardas, and B. Yazici: Anti-Corros. Methods Mater., 2016, vol. 63, pp. 369–76.CrossRefGoogle Scholar
  47. 47.
    48 H. Jafari, I. Danaee, H. Eskandari, and M. RashvandAvei: J. Mater. Sci. Technol., 2014, vol. 30, pp. 239–52.CrossRefGoogle Scholar
  48. 48.
    49 M. Messali, H. Lgaz, R. Dassanayake, R. Salghi, S. Jodeh, N. Abidi, and O. Hamed: J. Mol. Struct., 2017, vol. 1145, pp. 43–54.CrossRefGoogle Scholar
  49. 49.
    50 A. Kokalj: Electrochimica Acta, 2010, vol. 56, pp. 745–55.CrossRefGoogle Scholar
  50. 50.
    51 N. Kovačević and A. Kokalj: Corros. Sci., 2011, vol. 53, pp. 909–21.CrossRefGoogle Scholar
  51. 51.
    52 H. Lgaz, K. Subrahmanya Bhat, R. Salghi, Shubhalaxmi, S. Jodeh, M. Algarra, B. Hammouti, I.H. Ali, and A. Essamri: J. Mol. Liq., 2017, vol. 238, pp. 71–83.CrossRefGoogle Scholar
  52. 52.
    J.-P. Hansen and I.R. McDonald: Theory of Simple Liquids: With Applications to Soft Matter, Academic Press: Boston, 2013.Google Scholar
  53. 53.
    54 R. Wu, X. Qiu, Y. Shi, and M. Deng: Mol. Simul., 2017, vol. 43, pp. 491–501.CrossRefGoogle Scholar
  54. 54.
    55 S.-W. Xie, Z. Liu, G.-C. Han, W. Li, J. Liu, and Z. Chen: Comput. Theor. Chem., 2015, vol. 1063, pp. 50–62.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • A. Bouoidina
    • 1
  • F. El-Hajjaji
    • 1
  • M. Drissi
    • 2
  • M. Taleb
    • 1
  • B. Hammouti
    • 3
  • Ill-Min Chung
    • 4
  • S. Jodeh
    • 5
  • H. Lgaz
    • 4
  1. 1.Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of SciencesUniversity sidi Mohamed Ben AbdellahFezMorocco
  2. 2.Laboratory of Materials Chemistry and Bio-technology of Naturals Products, Faculty of SciencesUniversity Moulay IsmailMeknesMorocco
  3. 3.LC2AME, Faculté des SciencesUniversité Mohammed PremierOujdaMorocco
  4. 4.Department of Applied Bioscience, College of Life & Environment ScienceKonkuk UniversitySeoulSouth Korea
  5. 5.Department of ChemistryAn-Najah National UniversityNablusState of Palestine

Personalised recommendations