Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 5157–5168 | Cite as

Characterization of the Isothermal Precipitation Kinetics of an Al-Zn-Mg-Cu Alloy

  • Fulin Jiang
  • Hatem S. Zurob
  • Gary R. Purdy
  • Xiang Wang
  • Hui Zhang
Article
  • 139 Downloads

Abstract

The isothermal precipitation kinetics of an Al-Zn-Mg-Cu alloy was characterized over a wide range of temperatures by means of in situ electrical resistivity measurements, hardness testing, scanning, and transmission electron microscopy. During low temperature isothermal holding, behavior consistent with classical precipitate nucleation, growth, and coarsening was observed. At higher temperatures, the Ostwald coarsening process was characterized and was shown ultimately to result in widely dispersed, incoherent coarse particles. Isothermal temperature–time–precipitate–fraction curves were estimated based on evaluations of in situ electrical resistivity results. Isothermal treatments were observed to influence precipitation during subsequent heating but had little effect on precipitates dissolution.

Notes

Acknowledgments

Dr. Daisman P.B. Aji is acknowledged for his kind help on electrical resistivity measurements and DSC testing. This work is supported by the National Natural Science Foundation of China (51674111), the Research Fund for the Doctoral Program of Higher Education of China (20130161110007), and the Chinese Scholarship Council.

References

  1. 1.
    P.V. Liddicoat, X.Z. Liao, Y. Zhao, Y. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev and S.P. Ringer: Nat. Commun., 2010, vol. 1, pp. 1062-7.CrossRefGoogle Scholar
  2. 2.
    K. Ma, T. Hu, H. Yang, T. Topping, A. Yousefiani, E.J. Lavernia and J.M. Schoenung: Acta Mater., 2016, vol. 103, pp. 153-64.CrossRefGoogle Scholar
  3. 3.
    I. Polmear, D. StJohn, J.F. Nie and M. Qian: Light alloys: metallurgy of the light metals, Butterworth-Heinemann, Oxford, 2017.Google Scholar
  4. 4.
    G. Sha and Alfred Cerezo: Acta Mater., 2004, vol. 52, pp.4503-16.CrossRefGoogle Scholar
  5. 5.
    A. Deschamps and Y. Brechet: Acta Mater., 1998, vol. 47, pp. 293-305.CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, D. Pelliccia, B. Milkereit, N. Kirby, M.J. Starink and P.A. Rometsch: Mater. Des., 2018, vol. 142, pp. 259-67.CrossRefGoogle Scholar
  7. 7.
    J.Z. Liu, J.H. Chen, X.B. Yang, S. Ren, C.L. Wu, H.Y. Xu and J. Zou: Scr. Mater., 2010, vol. 63, pp.1061-4.CrossRefGoogle Scholar
  8. 8.
    D.K. Xu, P.A. Rometsch and N. Birbilis: Mater. Sci. Eng. A, 2012, vol. 534, pp. 234-43.CrossRefGoogle Scholar
  9. 9.
    P. Archambault and D. Godard: Scripta Mater., 2000, vol. 42, pp. 675-80.CrossRefGoogle Scholar
  10. 10.
    D. Godard, P. Archambault, E. Aeby-Gautier and G. Lapasset: Acta Mater., 2002, vol. 50, pp. 2319-29.CrossRefGoogle Scholar
  11. 11.
    J.F. dos Santos, P. Staron, T. Fischer, J.D. Robson, A. Kostka, P. Colegrove, H. Wang, J. Hilgert, L. Bergmann, L.L. Hütsch and N. Huber: Acta Mater., 2018, vol. 148, pp. 163-72.CrossRefGoogle Scholar
  12. 12.
    H.J. McQueen, M.E. Kassner, S. Spigarelli and E. Evangelista: Hot Deformation and Processing of Aluminum Alloys, CRC Press (Taylor & Francis Group), Boca Raton, FL,USA, 2011.Google Scholar
  13. 13.
    P. A. Rometsch, Y. Zhang and S. Knight: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2003-17.CrossRefGoogle Scholar
  14. 14.
    F.L.Jiang, H.S. Zurob, G.R. Purdy and H. Zhang: Mater.Sci. Eng. A, 2015, vol. 648, pp. 164-77.CrossRefGoogle Scholar
  15. 15.
    M. Zhou, Y.C. Lin, J. Deng and Y.Q. Jiang: Mater. Des., 2014, vol. 59, pp.141-50.CrossRefGoogle Scholar
  16. 16.
    F.L. Jiang, H.S. Zurob, G.R. Purdy and H. Zhang: Mater. Charact., 2016, vol. 117, pp. 47-56.CrossRefGoogle Scholar
  17. 17.
    F.L. Jiang, H.S. Zurob, G.R. Purdy and H. Zhang: Proceedings of the International Conference on Solid-Solid Phase Transformations in Inorganic Materials, eds. M. Militzer, G. Botton, L.Q. Chen, J. Howe, C. Sinclair, H. Zurob, , Whistler, BC, Canada, 2015, pp. 727–34.Google Scholar
  18. 18.
    F.L. Jiang and H. Zhang: J. Mater. Sci., 2018, vol. 53, pp.2830-43.CrossRefGoogle Scholar
  19. 19.
    T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre and B. Baroux: Acta Mater., 2010, vol. 58, pp. 248-60.CrossRefGoogle Scholar
  20. 20.
    C.R. Hutchinson, F. De Geuser, Y. Chen and A. Deschamps: Acta Mater., 2014, vol. 74, pp. 96-109.CrossRefGoogle Scholar
  21. 21.
    F. Viana, A. M. P. Pinto, H. M. C. Santos and A. B. Lopes: J. Mater. Proc. Tech., 1999, vol. 92, pp. 54-59.CrossRefGoogle Scholar
  22. 22.
    Ø. Grong and O.R. Myhr: Acta Mater., 2000, vol. 48, pp. 445-52.CrossRefGoogle Scholar
  23. 23.
    B. Raeisinia, W.J. Poole and D.J. Lloyd: Mater.Sci. Eng. A, 2006, vol. 420, pp. 245-49.CrossRefGoogle Scholar
  24. 24.
    N. Chobaut, D. Carron and J. M. Drezet: J. Alloys Compd., 2016, vol. 654, pp. 56-62.CrossRefGoogle Scholar
  25. 25.
    H. Seyedrezai, D. Grebennikov, P. Mascher and H. S.Zurob: Mater. Sci. Eng. A, 2009, vol. 525, pp.186-91.CrossRefGoogle Scholar
  26. 26.
    M. Niewczas, Z.S. Basinski, S.J. Basinski and J.D. Embury: Philos. Mag. A, 2001, vol. 81, pp. 1121-38.CrossRefGoogle Scholar
  27. 27.
    D.P.B. Aji: Structural relaxation, crystallization kinetics and diffusion study of metallic glasses, Ph.D. Thesis, McMaster University, 2010, pp. 132–38.Google Scholar
  28. 28.
    P.L. Rossiter: The Electrical Resistivity of Metals and Alloys, Cambridge, Cambridge University Press, 1987.CrossRefGoogle Scholar
  29. 29.
    R. Brandt and G. Neuer: Int. J. Thermophys., 2007, vol. 28, pp. 1429- 46.CrossRefGoogle Scholar
  30. 30.
    A. Deschamps and Y. Brechet: Mater. Sci. Eng. A, 1998, vol. 251, pp. 200-7.CrossRefGoogle Scholar
  31. 31.
    Y. Deng, Y. Zhang, L. Wan and X. Zhang: Mater. Sci. Eng. A, 2012, vol. 554, pp. 33-40.CrossRefGoogle Scholar
  32. 32.
    J.D. Robson and P.B. Prangnell: Acta Mater., 2001, vol. 49, pp. 599-613.CrossRefGoogle Scholar
  33. 33.
    J.G. Jung, J.S. Park and Y.K. Lee: Metal. Mater. Inter., 2013, vol. 19, pp. 147-52.CrossRefGoogle Scholar
  34. 34.
    O.R. Myhr and Ø. Grong: Acta Mater., 2000, vol. 48, pp. 1605-15.CrossRefGoogle Scholar
  35. 35.
    J.Z. Liu, J.H. Chen, D.W. Yuan, C.L.Wu, J. Zhu and Z.Y. Cheng: Mater. Charact., 2015, vol. 99, pp. 277-86.CrossRefGoogle Scholar
  36. 36.
    I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Fulin Jiang
    • 1
    • 2
  • Hatem S. Zurob
    • 2
  • Gary R. Purdy
    • 2
  • Xiang Wang
    • 2
  • Hui Zhang
    • 1
    • 3
  1. 1.College of Materials Science and EngineeringHunan UniversityChangshaChina
  2. 2.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  3. 3.Hunan Province Key Laboratory for Spray Deposition Technology and ApplicationHunan UniversityChangshaChina

Personalised recommendations