Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4429–4434 | Cite as

In Situ Observation on Bubble Behavior of Solidifying Al-Ni Alloy Under the Interference of Intermetallic Compounds

  • Siyu Sun
  • Qiaodan Hu
  • Wenquan Lu
  • Zongye Ding
  • Mingxu Xia
  • Jianguo Li
Communication

Abstract

The growth behavior of hydrogen bubbles and their interaction with intermetallic compounds during solidifying Al-Ni alloy were investigated by synchrotron radiation. The bubble growth can be divided as three stages, i.e., free growth, accelerated growth, and shrinkage. The free growth agrees well with stochastic model. The accelerated growth is attributed to the increase of hydrogen concentration and its gradient at the bubble–liquid interface caused by their contact. The negative hydrogen concentration gradient ahead of the bubble–liquid interface resulted in the bubble shrinkage. Also, the increasing gas pressure and decreasing Ni content promoted hydrogen dissolution.

Notes

This work is supported by the National Key Research and Development Program of China (2017YFA0403800), National Natural Science Foundation of China (51374144 and 51727802), Shanghai Municipal Natural Science Foundation (13ZR1420600), and Shanghai Rising-Star Program (14QA1402300). The support of the BL13W1 beam line of Shanghai Synchrotron Radiation Facility (SSRF) is gratefully acknowledged.

Supplementary material

11661_2018_4818_MOESM1_ESM.avi (224.5 mb)
Supplementary material 1 (AVI 229867 kb)

References

  1. 1.
    S. G. Zhang, L. Zhang, W. Q. Lu, W. Zhang, J. D. Yu, Y. N. Fu and J. G. Li: Appl. Phys. Lett., 2013, vol. 103, pp. 164103.CrossRefGoogle Scholar
  2. 2.
    M. Felberbaum and M. Rappaz: Acta Mater., 2011, vol. 59, pp. 6849-6860.CrossRefGoogle Scholar
  3. 3.
    P. D. Lee and J. D. Hunt: Acta Mater., 1997, vol. 45, pp. 4155-4169.CrossRefGoogle Scholar
  4. 4.
    P. D. Lee and J. D. Hunt: Acta Mater., 2001, vol. 49, pp. 1383-1398.CrossRefGoogle Scholar
  5. 5.
    A. G. Murphy, D. J. Browne, Y. Houltz and R. H. Mathiesen: Mater. Sci. Eng., 2016, vol. 117, pp. 12067-12072.Google Scholar
  6. 6.
    L. Zhao, H. C. Liao, Y. Pan, Q. G. Wang and G. X. Sun: China Foundry, 2011, vol. 8, pp. 14-18Google Scholar
  7. 7.
    W. Wu, M. F. Zhu, D. K. Sun, T. Dai, Q. Y. Han and D. Raabe: Mater. Sci. Eng., 2012, vol. 33, pp. 12103-12110.Google Scholar
  8. 8.
    T. Wang, D. An, Q. Zhang, T. Dai and M. Zhu: Mater. Sci. Eng., 2015, vol. 84, pp. 12046-12053.Google Scholar
  9. 9.
    L. Arnberg and R.H. Mathiesen: JOM, 2007, vol. 59, pp. 20-26.CrossRefGoogle Scholar
  10. 10.
    A.V. Catalina, S. Mukherjee and D. Stefanescu: Metall. Mater. Trans. A, 2000, vol. 31, pp. 2559-2568.CrossRefGoogle Scholar
  11. 11.
    H. Meidania, J.L. Desbiolles, A. Jacot and M. Rappaz, Acta Mater., 2012, vol. 60, pp. 2518-2527.CrossRefGoogle Scholar
  12. 12.
    S. Karagadde and P. Dutta, Int. Commu. Heat Mass Transfer., 2016, vol. 79, pp. 16-20.CrossRefGoogle Scholar
  13. 13.
    S. Karagadde, S. Sundarraj and P. Dutta, Comp. Mater. Sci., 2012, vol. 65, pp. 383-394.CrossRefGoogle Scholar
  14. 14.
    P. D. Lee, A. Chirazi and D. See: J. Light Metals, 2001, vol. 1, pp. 15-30.CrossRefGoogle Scholar
  15. 15.
    H. Xing, J. Y. Wang, C. L. Chen, K. X. Jin and Z. F. Shen: Scr. Mater., 2010, vol. 63 pp. 1228-1231.CrossRefGoogle Scholar
  16. 16.
    H. Xing, J. Y. Wang, C. L. Chen, Z. F. Shen and C. W. Zhao: J. Cryst. Growth, 2012, vol. 338, pp. 256-261.CrossRefGoogle Scholar
  17. 17.
    O. P. Fedorov: J. Cryst. Growth, 1990, vol. 102, pp. 857-861.CrossRefGoogle Scholar
  18. 18.
    C. Puncreobutr, A.B. Phillion, J.L. Fife and P.D. Lee: Acta Mater., 2014, vol. 64, pp. 316-325.CrossRefGoogle Scholar
  19. 19.
    J.S. Wang, M. Li, J. Allison and P.D. Lee: J. Appl. Phys., 2010, vol. 107, pp. 061804.CrossRefGoogle Scholar
  20. 20.
    N. Roy, A.M. Samuel and F.H. Samuel: Metall. Mater. Trans. A, 1996, vol. 27, pp. 415-429.CrossRefGoogle Scholar
  21. 21.
    S.Y. Sun, Q.D. Hu, W.Q. Lu, Z.Y Ding, M.Q. Xu, M.X. Xia and J.G. Li: Acta Metall. Sin. (Engl. Lett.), 2018, vol. 31, pp. 668-672.CrossRefGoogle Scholar
  22. 22.
    Z.Y. Ding, Q.D. Hu, W.Q. Lu, S.Y. Sun, M.X. Xia and J.G. Li: Scr. Mater., 2017, vol. 130, pp. 214-218.CrossRefGoogle Scholar
  23. 23.
    W.Q. Lu, S.G. Zhang and J.G. Li: Acta Metall. Sin. (Engl. Lett.), 2016, vol. 29, pp. 800-03.CrossRefGoogle Scholar
  24. 24.
    R. C. Atwood, S. Sridhar, W. Zhang and P. D. Lee: Acta Mater., 2000, vol. 48, pp. 405-417.CrossRefGoogle Scholar
  25. 25.
    R. C. Atwood and P. D. Lee: Acta Mater., 2003, vol. 51, pp. 5447-5466.CrossRefGoogle Scholar
  26. 26.
    H. C. Liao, L. Zhao, Y. N. Wu, R. Fan, Q. G. Wang and Y. Pan: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2587-2590.CrossRefGoogle Scholar
  27. 27.
    A. P. Boeira, I. L. Ferreira and A. Garcia: Mater. Design, 2009, vol. 30, pp. 2090-2098.CrossRefGoogle Scholar
  28. 28.
    A. Kunwar, H. T. Ma, J. H. Sun, S. Li and J. H. Liu: Met. Mater. Int., 2015, vol. 21, pp. 962-970.CrossRefGoogle Scholar
  29. 29.
    M.W. Mallett and W. M. Albrecht: J. Electrochem. Soc., 1957, vol. 104, pp. 142-146.CrossRefGoogle Scholar
  30. 30.
    Z.Y. Dai: Shanghai Jiao tong University, Master Thesis 2014 (in Chinese).Google Scholar
  31. 31.
    Z.Z. Li: Shenyang University of Technology, Master Thesis 2015 (in Chinese).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Siyu Sun
    • 1
  • Qiaodan Hu
    • 1
  • Wenquan Lu
    • 1
  • Zongye Ding
    • 1
  • Mingxu Xia
    • 1
  • Jianguo Li
    • 1
  1. 1.Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China

Personalised recommendations