Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 5015–5022 | Cite as

First-Principles Study on Hydrogen Diffusivity in BCC, FCC, and HCP Iron

  • K. Hirata
  • S. Iikubo
  • M. Koyama
  • K. Tsuzaki
  • H. Ohtani


The hydrogen diffusion behavior in BCC, FCC, and HCP iron has been investigated by means of first-principles calculations. Diffusion coefficients were estimated quantitatively from the migration energy derived by the Nudged elastic band method, and phonon calculations including the vibrations of all atoms at every stable and metastable site. Our calculations on the BCC structure show good agreement with those in the previous report. In the FCC structure as well, the calculated diffusion coefficients are in good agreement with experimental data. Our results suggest that the consideration of the antiferromagnetic state in FCC is important for the reproduction of experimental results. For the HCP structure, although there was a lack of systematic experimental results, our calculations predict that the diffusion coefficient is smaller than that in the case of the FCC sample. In the HCP lattice, there are two diffusion paths: one parallel to the c-axis and the other in the c-plane. The direction and the diffusion coefficient can be controlled by the tuning of c/a, which is the ratio of the lattice constants.



The research project was supported by the Japan Science and Technology Agency (JST) (Grant Number: 20100113) under Industry-Academia Collaborative R&D Program “Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials” and by JSPS KAKENHI (JP16H06365 and JP17H04956).


  1. 1.
    [1] M. Wang, E. Akiyama, K. Tsuzaki, Scripta Materialia 2005, vol.53(6), p.713-718.CrossRefGoogle Scholar
  2. 2.
    [2] D. Sasaki, M. Koyama, S. Hamada, H. Noguchi, Philosophical Magazine Letters, 2015, vol.95(5), p.260-268.CrossRefGoogle Scholar
  3. 3.
    [3] H. Matsunaga, O. Takakuwa, J. Yamabe, S. Matsuoka, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, vol.375, 2098.CrossRefGoogle Scholar
  4. 4.
    [4] P. Sofronis, R.M. McMeeking, Journal of the Mechanics and Physics of Solids,1989, vol.37(3), p.317-350.CrossRefGoogle Scholar
  5. 5.
    [5] D. Sasaki, M. Koyama, K. Higashida, K. Tsuzaki, H. Noguchi, International Journal of Hydrogen Energy, 2015, vol.40(31), p.9825-9837.CrossRefGoogle Scholar
  6. 6.
    [6] T.P. Perng and C.J. Alstetter: Metall. Trans. A, 1987, vol. 18, pp. 123-134.CrossRefGoogle Scholar
  7. 7.
    [7] T. Kanezaki, C. Narazaki, Y. Mine, S. Matsuoka and Y. Murakami: Int. J. Hydrogen Energ., 2008, vol. 33, pp. 2604-2619.CrossRefGoogle Scholar
  8. 8.
    [8] M. Koyama, E. Akiyama, K. Tsuzaki and D. Raabe: Act. Mater., 2013, vol. 61, pp. 4607-4618.CrossRefGoogle Scholar
  9. 9.
    [9] K. Tsuzaki, K. Fukuda, M. Koyama and H. Matsunaga: Scr. Mater., 2016, vol. 113, pp. 6-9.CrossRefGoogle Scholar
  10. 10.
    [10] M. Koyama and K. Tsuzaki: ISIJ Int., 2015, vol. 55, pp. 2269-2271.CrossRefGoogle Scholar
  11. 11.
    [11] M. Koyama, Y. Abe, K. Saito, E. Akiyama, K. Takai and K. Tsuzaki: Scr. Mater., 2016, vol. 122, pp. 50-53.CrossRefGoogle Scholar
  12. 12.
    [12] D. E. Jiang and E. A. Carter: Phys. Rev. B, 2004, vol. 70, p. 064102.CrossRefGoogle Scholar
  13. 13.
    [13] H. Kimizuka, H. Mori and S. Shigenobu: Phys. Rev. B, 2011, vol. 83, p. 094110.CrossRefGoogle Scholar
  14. 14.
    [14] D. D. Stefano, M. Mrovec and C. Elsässer: Phys. Rev. B, 2015, vol. 92, p. 224301.CrossRefGoogle Scholar
  15. 15.
    [15] L. Ismer, T. Hickel and J. Neugebauer: Phys. Rev. B, 2010, vol. 81, p. 094111.CrossRefGoogle Scholar
  16. 16.
    [16] A.V. Bakulin, T.I. Spiridonova, S.E. Kulkova, S. Hocker and S. Schmauder: Int. J. Hydrogen Energ., 2016, vol. 41, pp. 9108-9116.CrossRefGoogle Scholar
  17. 17.
    [17] Y. He, Y. Li, C. Chen and H. Yu: Int. J. Hydrogen Energ., 2017, vol. 42, pp. 27438-27445.CrossRefGoogle Scholar
  18. 18.
    [18] C. Wert and C. Zener: Phys. Rev., 1949, vol. 76, pp. 1169-1175.CrossRefGoogle Scholar
  19. 19.
    [19] K.W. Kehr: Theory of the Diffusion of Hydrogen in Metals, in: G. Alefeld, J. Völkl (Eds.), Hydrogen in Metals I, Springer, Berlin, Heidelberg, 1978, pp. 197-226.CrossRefGoogle Scholar
  20. 20.
    [20] G. Henkelman, B.P. Uberuaga and H. Jónsson: J. Chem. Phys., 2000, vol. 113, p. 9901.CrossRefGoogle Scholar
  21. 21.
    [21] H. Jónsson, G. Mills and K. W. Jacobsen: in: B. J. Berne, G. Ciccotti, D. F. Coker (Eds.), Nudged elastic band method for finding minimum energy paths of transitions, Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific, Singapore, 1998, pp. 385-404.CrossRefGoogle Scholar
  22. 22.
    [22] G. Kresse and J. Furthmuäller: Phys. Rev. B, 1996, vol. 54, p. 11169.CrossRefGoogle Scholar
  23. 23.
    [23] G. Kresse and J. Furthmuäller: Comp. Mater. Sci., 1996, vol. 6, p. 15.CrossRefGoogle Scholar
  24. 24.
    [24] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett., 1997, vol. 78, p. 1396.CrossRefGoogle Scholar
  25. 25.
    [25] P. E. Blöchl: Phys. Rev. B, 1994, vol. 50, p. 17953.CrossRefGoogle Scholar
  26. 26.
    [26] G. Kresse and D. Joubert: Phys. Rev. B, 1999, vol. 59, p. 1758.CrossRefGoogle Scholar
  27. 27.
    [27] H.J. Monkhorst and J.D. Pack: Phys. Rev. B, 1976, vol. 13, p. 5188.CrossRefGoogle Scholar
  28. 28.
    [28] H. C. Herper, E. Hoffmann and P. Entel: Phys. Rev. B, 1999, vol. 60, p. 3839.CrossRefGoogle Scholar
  29. 29.
    [29] D. E. Jiang and E. A. Carter: Phys. Rev. B, 2003, vol. 67, p. 214103.CrossRefGoogle Scholar
  30. 30.
    [30] Z. Lu, W. Zhu, T. Lu and W. Wang: Modelling Simul. Mater. Sci. Eng., 2014, vol. 22, p. 025007.CrossRefGoogle Scholar
  31. 31.
    [31] K. Parlinski, Z.Q. Li and Y. Kawazoe: Phys Rev Lett., 1997, vol. 78, pp. 4063-4066.CrossRefGoogle Scholar
  32. 32.
    [32] Y. Sakagami, R. Matsumoto, D. Alfè, D. Taketomi, T. Enomoto and N. Miyazaki: Trans. Mater. Res. Soc. Jpn., 2012, vol. 37, pp. 1–6.CrossRefGoogle Scholar
  33. 33.
    H. Mehrer, ed.: Diffusion in solid Metals and Alloys, Landolt-Börnstein New Series, Group III, 69, Springer, Berlin, 1990, p. 529.Google Scholar
  34. 34.
    S.A. Danilkin, D. Delafosse, H. Fuess, V.G. Gavriljuk, A. Ivanov, T. Magnin and H. Wipf (2002) Appl. Phys. A, vol. 74, pp. 992–994.CrossRefGoogle Scholar
  35. 35.
    [35] A. Machida, H. Saitoh, H. Sugimoto, T. Hattori, A. Sano-Furukawa, N. Endo, Y. Katayama, R. Iizuka, T. Sato, M. Matsuo, S. Orimo and K. Aoki: Nat. Commun., 2014, vol. 5, p. 5063.CrossRefGoogle Scholar
  36. 36.
    [36] E. Wimmer, W. Wolf, J. Sticht, P. Saxe, C.B. Geller, R. Najafabadi and G.A. Young: Phys. Rev. B, 2008, vol. 77, p.134305.CrossRefGoogle Scholar
  37. 37.
    [37] K. Cornell, H. Wipf, V.E. Antonov, T.E. Antonova, A.I. Kolesnikov, E.G. Ponyatovsky and B. Dorner: Pol. J. Chem., 1997, vol. 71, pp. 1792-1796.Google Scholar
  38. 38.
    [38] D. T. Pierce, J. A. Jiménez, J. Bentley, D. Raabe, C. Oskay and J. E. Witting: Act. Mater., 2014. vol 68, pp. 238-253.CrossRefGoogle Scholar
  39. 39.
    [39] C. M. S. Gannarelli, D. Alfè and M. J. Gillan: Phys. Earth Planet. Inter., 2005, vol. 152, pp. 67-77.CrossRefGoogle Scholar
  40. 40.
    [40] T. Sakai, E. Ohtani, N. Hirao and Y. Ohishi: Geophys. Res. Lett., 2011, vol. 38, p. L09302.CrossRefGoogle Scholar
  41. 41.
    [41] D. Antonangeli, L.R. Benedetti, D.L. Farber, G. Steinle-Neumann, A.L. Auzende, J. Badro, M. Hanfland and M. Krinch: Appl. Phys. Lett., 2008, vol. 92, p. 111911.CrossRefGoogle Scholar
  42. 42.
    [42] S. Hinata, R. Yanagisawa, S. Saito and M. Takahashi: J. Appl. Phys., 2009, vol. 105, p. 07B718.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • K. Hirata
    • 1
  • S. Iikubo
    • 1
  • M. Koyama
    • 2
  • K. Tsuzaki
    • 2
  • H. Ohtani
    • 3
  1. 1.Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyFukuokaJapan
  2. 2.Department of Mechanical EngineeringKyushu UniversityFukuokaJapan
  3. 3.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations