Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 5065–5079 | Cite as

Asymmetric Cracking in Mar-M247 Alloy Builds During Electron Beam Powder Bed Fusion Additive Manufacturing

  • Y. S. Lee
  • M. M. Kirka
  • S. Kim
  • N. Sridharan
  • A. Okello
  • R. R. Dehoff
  • S. S. Babu
Article
  • 201 Downloads

Abstract

In the electron beam powder bed fusion (EB-PBF) process, a substantial number of high-gamma prime Ni-based superalloys are considered as non-printable due to a high propensity to form cracks. In this research, we focused on computational modeling framework to predict solidification-related cracking phenomena in EB-PBF processes. The cracking analysis was performed on cylindrical overhang structures where the cracks are observed only on one side of the part. Comprehensive microstructural characterization correlated the cracking tendency to low-melting point liquid-film formation along columnar grain boundaries with high misorientation angles due to partitioning of alloying elements. Uncoupled numerical thermal and mechanical models were used to rationalize the relationship between process parameters, build geometry, and cracking. The simulations showed asymmetric temperature distributions and associated asymmetric tensile thermal stresses over a cross section due to differences in section modulus and periodic changes in beam scanning directions. The results provide a potential pathway based on spatially varying beam scanning strategies to reduce the cracking tendency during additive manufacturing of complex geometries on the overhang structure in high-gamma prime nickel-based superalloys.

Notes

Acknowledgments

The research was sponsored by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office under contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors thank Dr. Alex Plotkowski of ORNL for constructive criticism.

References

  1. 1.
    M. Seifi, A. Salem, J. Beuth, O. Harrysson and J.J. Lewandowski: JOM, 2016, vol. 68, pp. 747-764.CrossRefGoogle Scholar
  2. 2.
    N.J. Harrison, I. Todd and K. Mumtaz: Acta Mater., 2015, vol. 94, pp. 59-68.CrossRefGoogle Scholar
  3. 3.
    M. Ramsperger, R.F. Singer and C. Körner: Metall. Mater. Trans. A, 2016, vol. 47, pp. 1469-1480.CrossRefGoogle Scholar
  4. 4.
    R. Baldan, P.R.S.A. e Silva, C.A. Nunes and G.C. Coelho: J. Mater. Eng. Perform., 2013, vol. 22, pp. 2337-2342.CrossRefGoogle Scholar
  5. 5.
    A. Basak and S. Das: J. Alloys Compd., 2017, vol. 705, pp. 806-816.CrossRefGoogle Scholar
  6. 6.
    L.N. Carter, M.M. Attallah and R.C. Reed: in Superalloys 2012, Roger C. Reed Eric S. Huron, Mark C. Hardy, Michael J. Mills, Rick E. Montero, Pedro D. Portella and Jack Telesman, eds., The Minerals, Metals & Materials Society, 2012, pp. 577–86.Google Scholar
  7. 7.
    E. Chauvet, P. Kontis, E.A. Jägle, B. Gault, D. Raabe, J.-J. Blandin, R. Dendievel, B. Vayre, S. Abed and G. Martin: Acta Mater., 2018, vol. 142, pp. 82-94.CrossRefGoogle Scholar
  8. 8.
    L.N. Carter, C. Martin, P.J. Withers and M.M. Attallah: J. Alloys Compd., 2014, vol. 615, pp. 338-347.CrossRefGoogle Scholar
  9. 9.
    D. Gu, W. Meiners, K. Wissenbach and R. Poprawe: Int. Mater. Rev., 2012, vol. 57, pp. 133-164.CrossRefGoogle Scholar
  10. 10.
    J.C. Lippold, S.D. Kiser and J.N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys. Wiley, Hoboken, 2011.Google Scholar
  11. 11.
    S. Kou: Welding Metallurgy. Wiley, Hoboken 2003.Google Scholar
  12. 12.
    J. Zhang: In Superalloys 2004, T.M. Pollock K.A. Green, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S, Walston, eds., The Minerals, Metals & Materials Society, 2004, pp. 727–33.Google Scholar
  13. 13.
    J.-W. Park, J. Vitek, S. Babu and S. David: Sci. Technol. Weld. Joining, 2004, vol. 9, pp. 472-482.CrossRefGoogle Scholar
  14. 14.
    C. Cross: On the Origin of Weld Solidification Cracking, In Hot Cracking Phenomena in Welds. Springer, Berlin, Heidelberg, 2005, pp. 3-18.CrossRefGoogle Scholar
  15. 15.
    W. Savage and A. Aronson: Weld J, 1966, vol. 45, pp. 85s-89s.Google Scholar
  16. 16.
    S. Kou: JOM, 2003, vol. 55, pp. 37-42.CrossRefGoogle Scholar
  17. 17.
    N. Wang, S. Mokadem, M. Rappaz and W. Kurz: Acta Mater., 2004, vol. 52, pp. 3173-3182.CrossRefGoogle Scholar
  18. 18.
    T.P. Mitchell, R. Sanderson and B.G. Dance: Mater. Sci. Forum, 2007, vol. 539, pp. 3985-3990.CrossRefGoogle Scholar
  19. 19.
    L. Ma and H. Bin: Int. J. Adv. Manuf. Technol., 2007, vol. 34, pp. 898-903.CrossRefGoogle Scholar
  20. 20.
    S. Catchpole-Smith, N. Aboulkhair, L. Parry, C. Tuck, I. Ashcroft and A. Clare: Addit. Manuf., 2017, vol. 15, pp. 113-122.CrossRefGoogle Scholar
  21. 21.
    B. Cheng, S. Shrestha and K. Chou: Addit. Manuf., 2016, vol. 12, pp. 240-251.CrossRefGoogle Scholar
  22. 22.
    M.F. Zaeh and M. Kahnert: Prod. Eng., 2009, vol. 3, pp. 217-224.CrossRefGoogle Scholar
  23. 23.
    M.M. Kirka, Y. Lee, D.A. Greeley, A. Okello, M.J. Goin, M.T. Pearce and R.R. Dehoff: JOM, 2017, vol. 69, pp. 523-531.CrossRefGoogle Scholar
  24. 24.
    Y.S. Lee, M.M. Kirka, N. Raghavan and R.R. Dehoff: in Solid Free. Fabr.Symp., University of Texas at Austin, 2017, pp. 1005–17.Google Scholar
  25. 25.
    A.E. Patterson, S.L. Messimer and P.A. Farrington: Technologies, 2017, vol. 5, p. 15.CrossRefGoogle Scholar
  26. 26.
    M. Thomas, G.J. Baxter and I. Todd: Acta Mater., 2016, vol. 108, pp. 26-35.CrossRefGoogle Scholar
  27. 27.
    P. Delroisse, P.J. Jacques, E. Maire, O. Rigo and A. Simar: Scr. Mater., 2017, vol. 141, pp. 32-35.CrossRefGoogle Scholar
  28. 28.
    N. Sridharan, M. Norfolk and S.S. Babu: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2517-2528.CrossRefGoogle Scholar
  29. 29.
    N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson and S.S. Babu: Acta Mater., 2016, vol. 112, pp. 303-314.CrossRefGoogle Scholar
  30. 30.
    Y. Lee and W. Zhang: Addit. Manuf., 2016, vol. 12, pp. 178-188.CrossRefGoogle Scholar
  31. 31.
    W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin and G.J. Wagner: Acta Materialia, 2017, vol. 134, pp. 324-333.CrossRefGoogle Scholar
  32. 32.
    S.A. Khairallah, A.T. Anderson, A. Rubenchik and W.E. King: Acta Mater., 2016, vol. 108, pp. 36-45.CrossRefGoogle Scholar
  33. 33.
    C. Körner, E. Attar and P. Heinl: J. Mater. Process. Technol., 2011, vol. 211, pp. 978-987.CrossRefGoogle Scholar
  34. 34.
    A. Klassen, V.E. Forster, V. Juechter and C. Körner: J. Mater. Process. Technol., 2017, vol. 247, pp. 280-288.CrossRefGoogle Scholar
  35. 35.
    D. Riedlbauer, T. Scharowsky, R.F. Singer, P. Steinmann, C. Körner and J. Mergheim: Int. J. Adv. Manuf. Technol., 2017, vol. 88, pp. 1309-1317.CrossRefGoogle Scholar
  36. 36.
    J.B. M. S. Alnaes, J. Hake, A. Johansson, A.L. B. Kehlet, C. Richardson, J. Ring, M. E. Rognes, G.N. Wells: The FEniCS Project Version 1.5, Archive of Numerical Software, 2015, vol. 3, pp. 9–23.Google Scholar
  37. 37.
    A. Logg and G.N. Wells: ACM Trans. Math. Softw., 2010, vol. 37, p. 20.CrossRefGoogle Scholar
  38. 38.
    B.E. Abali: Computational Reality. 1 ed. Springer, Singapore, 2017.CrossRefGoogle Scholar
  39. 39.
    K. Abderrazak, S. Bannour, H. Mhiri, G. Lepalec and M. Autric: Comput. Mater. Sci, 2009, vol. 44, pp. 858-866.CrossRefGoogle Scholar
  40. 40.
  41. 41.
    N. Saunders, U. Guo, X. Li, A. Miodownik and J.-P. Schillé: JOM, 2003, vol. 55, pp. 60-65.CrossRefGoogle Scholar
  42. 42.
    ABAQUS Documentation, Dassault Systémes Simulia Corp, Providence, RI, USA, 2011.Google Scholar
  43. 43.
    O. Muránsky, C.J. Hamelin, M.C. Smith, P.J. Bendeich and L. Edwards: Comput. Mater. Sci, 2012, vol. 54, pp. 125-134.CrossRefGoogle Scholar
  44. 44.
    M. Smith and A. Smith: Int. J. Press. Vessels Pip., 2009, vol. 86, pp. 79-95.CrossRefGoogle Scholar
  45. 45.
    L. Wang, N. Wang and N. Provatas: Acta Mater., 2017, vol. 126, pp. 302-312.CrossRefGoogle Scholar
  46. 46.
    Z. Feng, S. David, T. Zacharia and C. Tsai: Sci. Technol. Weld. Joining, 1997, vol. 2, pp. 11-19.CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  • Y. S. Lee
    • 1
    • 2
  • M. M. Kirka
    • 1
    • 2
  • S. Kim
    • 1
    • 2
  • N. Sridharan
    • 1
    • 2
  • A. Okello
    • 1
    • 2
  • R. R. Dehoff
    • 1
    • 2
  • S. S. Babu
    • 1
    • 3
  1. 1.Manufacturing Demonstration Facility, Oak Ridge National LaboratoryKnoxvilleUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Department of Mechanical, Aerospace and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations