Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4595–4603 | Cite as

Effect of Compositional Changes of Laves Phase Precipitate on Grain Boundary Embrittlement in Long-Term Annealed 9 Pct Cr Ferritic Steel

  • Cheoljun Bae
  • Rosa Kim
  • Jung Ho Heo
  • Jongryoul KimEmail author


In 9 to 12 pct chromium steels, the high-temperature mechanical properties are known to be strongly dependent on the formation and coarsening of Laves phase precipitates at boundaries. During high-temperature deformation, the Laves phase precipitate coarsening to over a critical size has been considered to trigger cavity formation at the precipitate-matrix interfaces. This coarsening, accompanied by the diffusion of W, Mo, and Cr, should change the mechanical properties and chemical composition of both Laves phase precipitates and the matrix. In this study, we aimed to clarify the effects of compositional changes of Laves phase precipitates on cavity formation during coarsening. The values of the Fe/Cr and W/Mo ratios in Laves phase precipitates were shown to induce different levels of strain energy in the vicinity of the Laves phase precipitate, consequently promoting the formation of cavities. Therefore, the compositional change of Laves phase precipitates was found to play a critical role in the grain boundary embrittlement of high Cr steel at elevated temperature.



This work was supported by the Human Resources Development program (No. 20174030201830) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korean Government Ministry of Trade, Industry and Energy and the National Research Council of Science & Technology (NST) Grant by the Korean Government (MSIT) (No. CRC-15-03-KIMM).


  1. 1.
    A. Aghajani, C. Somsen, G. Eggeler, Acta Mater., 2009, vol. 57, pp. 5093-106CrossRefGoogle Scholar
  2. 2.
    T. Gibbons, Trans. Indian Inst. Met., 2013, vol. 66, pp. 631-40CrossRefGoogle Scholar
  3. 3.
    G. Gupta, G.S. Was, Metall. Mater. Trans. A, 2008, vol. 39, pp. 150-64CrossRefGoogle Scholar
  4. 4.
    K. Maruyama, K. Sawada, J.-i. Koike, ISIJ Inter., 2001, vol. 41, pp. 641-53CrossRefGoogle Scholar
  5. 5.
    F. Masuyama, ISIJ Inter., 2001, vol. 41, pp. 612-25CrossRefGoogle Scholar
  6. 6.
    K. Sawada, M. Takeda, K. Maruyama, R. Ishii, M. Yamada, Y. Nagae, R. Komine, Mater. Sci. Eng., A, 1999, vol. 267, pp. 19-25CrossRefGoogle Scholar
  7. 7.
    V.M. Chernov, M.V. Leont’eva-Smirnova, E.M. Mozhanov, N.S. Nikolaeva, A.N. Tyumentsev, N.A. Polekhina, I.Y. Litovchenko, E.G. Astafurova, Tech. Phys., 2016, vol. 61, pp. 209-14CrossRefGoogle Scholar
  8. 8.
    G. Golański, A. Zieliński, A. Zieliński-Lipiec, Mater. Sci. Eng. Tech., 2015, vol. 46, pp. 248-55Google Scholar
  9. 9.
    A. Grybėnas, V. Makarevičius, A. Baltušnikas, I. Lukošiūtė, R. Kriūkienė, Mater. Sci. Eng., A, 2017, vol. 696, pp. 453-460CrossRefGoogle Scholar
  10. 10.
    C.G. Panait, A. Zielińska-Lipiec, T. Koziel, A. Czyrska-Filemonowicz, A.-F. Gourgues-Lorenzon, W. Bendick, Mater. Sci. Eng., A, 2010, vol. 527, pp. 4062-9CrossRefGoogle Scholar
  11. 11.
    V. Thomas Paul, S. Saroja, M. Vijayalakshmi, J. Nucl. Mater., 2008, vol. 378, pp. 273-81CrossRefGoogle Scholar
  12. 12.
    J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, H. Asahi, Mater. Sci. Eng., A, 2006, vol. 428, pp. 270-5CrossRefGoogle Scholar
  13. 13.
    O. Prat, J. Garcia, D. Rojas, G. Sauthoff, G. Inden, Intermetallics, 2013, vol. 32, pp. 362-72CrossRefGoogle Scholar
  14. 14.
    Y. Xu, M. Wang, Y. Wang, T. Gu, L. Chen, X. Zhou, Q. Ma, Y. Liu, J. Huang, J. Alloys Comp., 2015, vol. 621, pp. 93-98CrossRefGoogle Scholar
  15. 15.
    S.H. Goods, L.M. Brown, Acta Metall., 1979, vol. 27, pp. 1-15CrossRefGoogle Scholar
  16. 16.
    J.J. Lewandowski, C. Liu, W.H. Hunt, Mater. Sci. Eng., A, 1989, vol. 107, pp. 241-55CrossRefGoogle Scholar
  17. 17.
    L. Cipolla, A. Di Gianfrancesco, D. Venditti, G. Cumino, S. Caminada, Am. Soc. Mech. Eng., 2007, pp. 445–59Google Scholar
  18. 18.
    F. Abe, H. Araki, T. Noda, Metall. Trans. A, 1991, vol. 22, pp. 2225-35CrossRefGoogle Scholar
  19. 19.
    F. Abe, S. Nakazawa, Metall. Trans. A, 1992, vol. 23, pp. 3025-34CrossRefGoogle Scholar
  20. 20.
    Y. de Carlan, A. Alamo, M.H. Mathon, G. Geoffroy, A. Castaing, J. Nucl. Mater., 2000, vol. 283, pp. 672-6CrossRefGoogle Scholar
  21. 21.
    A. Fujio, Sci. Tech. Adv. Mater., 2008, vol. 9, pp. 3002-16Google Scholar
  22. 22.
    A. Kipelova, A. Belyakov, R. Kaibyshev, Philos. Mag., 2013, vol. 93, pp. 2259-68CrossRefGoogle Scholar
  23. 23.
    M. Nie, J. Zhang, F. Huang, J.W. Liu, X.K. Zhu, Z.L. Chen, L.Z. Ouyang, J. Alloys Comp., 2014, vol. 588, pp. 348-56CrossRefGoogle Scholar
  24. 24.
    W. Wang, W. Yan, W. Sha, Y. Shan, K. Yang, Metall. Mater. Trans. A, 2012, vol. 43, pp. 4113-22CrossRefGoogle Scholar
  25. 25.
    P. Hofer, H. Cerjak, B. Schaffernak, P. Warbichler, Steel Res., 1998, vol. 69, pp. 343-8CrossRefGoogle Scholar
  26. 26.
    I. Fedorova, A. Belyakov, P. Kozlov, V. Skorobogatykh, I. Shenkova, R. Kaibyshev, Mater. Sci. Eng., A, 2014, vol. 615, pp. 153-63CrossRefGoogle Scholar
  27. 27.
    G. Dimmler, P. Weinert, E. Kozeschnik, H. Cerjak, Mater. Charact., 2003, vol. 51, pp. 341-52CrossRefGoogle Scholar
  28. 28.
    A.J. Ardell, Acta Metall., 1972, vol. 20, pp. 61-71CrossRefGoogle Scholar
  29. 29.
    A.D. Brailsford, P. Wynblatt, Acta Metall., 1979, vol. 27, pp. 489-97CrossRefGoogle Scholar
  30. 30.
    X. Wang, Q. Xu, S.-m. Yu, L. Hu, H. Liu, Y.-y. Ren, Mater. Chem. Phys., 2015, vol. 163, pp. 219-28CrossRefGoogle Scholar
  31. 31.
    H. Ghassemi Armaki, R. Chen, K. Maruyama, M. Igarashi, Mater. Sci. Eng., A, 2010, vol. 527, pp. 6581-8CrossRefGoogle Scholar
  32. 32.
    32. V. Vodarek, A. Strang, Mater. Chem. Phys., 2003, vol. 81, pp. 480-2CrossRefGoogle Scholar
  33. 33.
    F. R. N. Nabarro, Math. Phys. Sci., 1940, vol. 175, pp. 519-38CrossRefGoogle Scholar
  34. 34.
    F. Emiliana, P. Daniele, T. Enrico, Sci. Tech. Adv. Mater., 2010, vol. 11, pp. 4503-11Google Scholar
  35. 35.
    A.R. Denton, N.W. Ashcroft, Phys. Rev. A, 1991, vol. 43, pp. 3161-4CrossRefGoogle Scholar
  36. 36.
    Z.Q. Lv, Z.F. Zhang, Q. Zhang, Z.H. Wang, S.H. Sun, W.T. Fu, Solid State Sci., 2016, vol. 56, pp. 16-22CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Cheoljun Bae
    • 1
  • Rosa Kim
    • 1
  • Jung Ho Heo
    • 1
  • Jongryoul Kim
    • 1
    Email author
  1. 1.Department of Material and Chemical EngineeringHanyang UniversityAnsan-siRepublic of Korea

Personalised recommendations