Metallurgical and Materials Transactions A

, Volume 49, Issue 9, pp 3812–3830 | Cite as

Additive Manufacturing of Powdery Ni-Based Superalloys Mar-M-247 and CM 247 LC in Hybrid Laser Metal Deposition

  • André SeidelEmail author
  • Thomas Finaske
  • Ariane Straubel
  • Horst Wendrock
  • Tim Maiwald
  • Mirko Riede
  • Elena Lopez
  • Frank Brueckner
  • Christoph Leyens
Topical Collection: Superalloys and Their Applications
Part of the following topical collections:
  1. Third European Symposium on Superalloys and their Applications


The present paper addresses the phenomena of hot cracking of nickel-based superalloys in the perspective of hybrid Laser Metal Deposition (combined application of induction and laser). This includes an extract of relevant theoretical considerations and the deduction of the tailored approach which interlinks material–scientific aspects with state-of-the-art manufacturing engineering. The experimental part reflects the entire process chain covering the manufacturing strategy, important process parameters, the profound analysis of the used materials, the gradual process development, and the corresponding hybrid manufacture of parts. Furthermore, hot isostatic pressing and thermal treatment are addressed as well as tensile testing at elevated temperatures. Further investigations include X-ray CT measurements, electron backscattered diffraction (EBSD), and scanning electron microscopy (SEM) as well as light optical microscope evaluation. The fundamental results prove the reliable processibility of the high-performance alloys Mar-M-247 and Alloy 247 LC and describe in detail the process inherent microstructure. This includes the grain size and orientation as well as the investigation of size, shape, and distribution of the γ′ precipitates and carbides. Based on these findings, the manufacturing of more complex demonstrator parts with representative dimensions is addressed as well. This includes the selection of a typical application, the transfer of the strategy, as well as the proof of concept.


  1. 1.
    R. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  2. 2.
    M.M. Coporation: Nickel Base Alloy. USA Patent 3720509, 14 Dezember 1970.Google Scholar
  3. 3.
    Al. Gunderson, S.J. Setlak, and W.F. Brown: Aerospace Structural Metals Handbook, vol. 6, CINDAS LLC, West Lafayette, Indiana, 2007 (Revised).Google Scholar
  4. 4.
    C. Yan, L. Zhengdong, A. Godfrey, L. Wei and W. Yuging: Materials Science and Engineering A, 2014, vol. 30, issue 2, pp. 153–164.CrossRefGoogle Scholar
  5. 5.
    C.H. Tsai, and W. Weite: Metallurgical and Materials Transactions A, vol. 30, issue 2, 1999, pp. 417–26.Google Scholar
  6. 6.
    A. Hübner: Untersuchungen über den Einfluss und die Wirkungen von Stickstoffzusätzen im Schutzgas auf das Heißrissverhalten ausgewählter heißrissempfindlicher Nickel-Basiswerkstoffe, Magdeburg, Otto-von-Guericke-Universität Magdeburg (Diss.), 2005.Google Scholar
  7. 7.
    U. Dilthey: Schweißtechnische Fertigungsverfahren 2 - Verhalten der Werkstoffe beim Schweißen, vol 3, Aachen, Springer Verlag, 2005.Google Scholar
  8. 8.
    W. Liu, X. Tian, and X. Zhang: Weld. J. (Weld. Res. Suppl.), 1996, pp. 297–304.Google Scholar
  9. 9.
    X. Cao, B. Rivaux, M. Jahazi, J. Cuddy and A. Birur: Journal of Materials Science, 2009, vol. 44, pp. 4557-4571.CrossRefGoogle Scholar
  10. 10.
    E.M. Lehockey, G. Palumbo, and P. Lin: Metall. Mater. Trans. A, vol. 29A, issue 12, 1998, pp. 3069–79.CrossRefGoogle Scholar
  11. 11.
    G. Göbel: Erweiterung der Prozessgrenzen beim Laserstrahlschweißen heißrissgefährdeter Werkstoffe. Dresden & Stuttgart, Technische Universität Dresden (Diss.), 2008.Google Scholar
  12. 12.
    F. Brückner: Modellrechnungen zum Einfluss der Prozessführung beim induktiv unterstützten Laser-Pulver-Auftragschweißen auf die Entstehung von thermischen Spannungen, Rissen und Verzug. Dresden, Technische Universität Dresden (Diss.), 2011.Google Scholar
  13. 13.
    A. Seidel: Heißrissreduzierung durch magnetofluiddynamische Maßnahmen beim Laserauftragschweißen am Beispiel der Nickelbasis-Superlegierung Mar-M-247. Thesis, Dresden, Technische Universität Dresden, 2014 (pursuing
  14. 14.
    K. Gupta, N.K. Jain, and R.F. Laubscher: Hybrid Machining Processes: Perspectives on Machining and Finishing, Springer International Publishing AG, 2016.Google Scholar
  15. 15.
    W. Grzesik: Advanced Machining Processes of Metallic Materials: Theory, Modelling, and Applications, vol 2, Elsevier, San Diego, 2016.Google Scholar
  16. 16.
    E. Beyer: Schweißen mit Laser - Grundlagen. Springer, Berlin, 1995.CrossRefGoogle Scholar
  17. 17.
    D. Lepski, and F. Brückner: Laser Cladding. The Theory of Laser Materials Processing—Heat an Mass Transfer in Modern Technology, Springer, Dresden, 2009, pp. 235–79.CrossRefGoogle Scholar
  18. 18.
    C. S. Wu: Welding Thermal Processes and Weld Pool Behaviors, London, CRC Press, 2010.Google Scholar
  19. 19.
    D. M. Stefanescu: Science and Engineering of Casting Soldification, Second Edition, Columbus Ohio USA, Springer Science+Business Media, LLC, 2009.Google Scholar
  20. 20.
    S. Kou: Welding Metallurgy, Wisconsin, Wiley Interscience, 2003.Google Scholar
  21. 21.
    W. Kurz, and D. Fisher: Fundamentals of Soldification, Fourth Revised Edition, Lausanne, Trans Tech Publications Ltd, 2005 (Reprinted).Google Scholar
  22. 22.
    R. Bürgel, Hans J. Maier and T. Niendorf: Handbuch Hochtemperatur-Werkstoffe Grundlagen, Werkstoffbeanspruchungen, Hochtemperaturlegierungen und –beschichtungen, vol 4, Wiesbaden, Vieweg+Teubner Verlag, 2011.CrossRefGoogle Scholar
  23. 23.
    T.M. Pollock, W.H. Murphy, E.H. Goldman, D.L. Uram, and J.S. Tu: Superalloys 1992, Proc. 7th Int. Symp. on Superalloys, Seven Springs/Pa., The Minerals, Metals & Materials Society, Warrendale/Pa., 1992, pp. 125–34.Google Scholar
  24. 24.
    M. A. Taha and W. Kurz: About Microsegregation of Nickel Base Superalloys, Zeitschrift für Metallkunde 72, 1981, pp. 546–549.Google Scholar
  25. 25.
    D. Ma and P. R. Sahm: Einkristallerstarrung der Ni-Basis-Superlegierung SRR99, Teil2: Mikroseigerungsverhalten der Legierungselemente, Zeitschrift für Metallkunde 87, 1996, pp. 634– 639.Google Scholar
  26. 26.
    M.S.A. Karunaratne, D.C. Cox, P. Porter, and R.C. Reed, Superalloys 2000, Proc. 9th Int. Symp. on Superalloys, Seven Springs/Pa., The Minerals, Metals & Materials Society, Warrendale/Pa., 2000, pp. 263–72.Google Scholar
  27. 27.
    A. R. E Singer and P. H. Jennings: J. Inst. Met.,1947, vol 74, pp. 197-212.Google Scholar
  28. 28.
    H. F. Bishop, C. E. Ackerland and S. W. Pellini: Trans. Am. Foundry Soc., 1952, vol. 60, pp. 818-913.Google Scholar
  29. 29.
    W. S. Pellini: Foundry, 1952, vol. 80, pp. 125-199.Google Scholar
  30. 30.
    C. Borland: Br. W. J.,1960, vol. 7, pp. 508-512.Google Scholar
  31. 31.
    M. Rappaz, J. M. Drezet and M. Gremaud: Metall. Mater. Trans. A, vol. 30A, 1999, pp. 449–55.CrossRefGoogle Scholar
  32. 32.
    S. Bonss, M. Seifert, J. Hannweber, U. Karsunke, S. Kühn, D. Pögen, and E. Beyer: Invited Paper at the 9th International Conference on Photonic Technologies LANE 2016, Physics Procedia, vol. 83, pp. 1–1450.Google Scholar
  33. 33.
    Ken-Tu Hsu, Huei-Sen Wang, Wei Bin He, Chen-Ming Kuo, Hui-Yun Bor and Chao-Nan Wei: Supplemental Proceedings: Materials Properties, Characterization, and Modeling, vol. 2, 2012, pp. 667-672.Google Scholar
  34. 34.
    DIN EN ISO 6892-2:2011-05, Metallic materials—Tensile testing—Part 2: method of test at elevated temperature (ISO 6892-2:2011).Google Scholar
  35. 35.
    M. V. Nathal and R. A. Mackay: Acta Metallurgica et Materialia, vol. 39, 1991, pp. 2771-2781.CrossRefGoogle Scholar
  36. 36.
    R. Baldan, C. A. Nunes, M. J. R. Barboza, A. M . S. Costa, R. Bogado and G. C. Coelho.: Int. Conf. Adv. Mater., vol 11, 2009, pp. 56-67.Google Scholar
  37. 37.
    J. Davids.: Heat-Resistant Materials, The Materials Information Society, Materials Park, Ohio, 1997.Google Scholar
  38. 38.
    A. Basak and S. Das: Journal of Alloys and Compounds, vol. 705, 2017, pp. 806-816.CrossRefGoogle Scholar
  39. 39.
    X. Wang,N. Luke. B. Pang Carter, Moataz M. Attallah and Michael H. Loretto, Acta Materialia, vol. 128, 2017, pp 87-95.CrossRefGoogle Scholar
  40. 40.
    J.R. Kattschuk: MAR-M247, Aerospace Structural Metals Handbook, 1999, pp. 1–7.Google Scholar
  41. 41.
    P. Heuler and H. Huff: Niedrigschwingspielzahl-Ermüdung (LCF) von Turbinenrädern aus Nickelbasis-Gußwerkstoffen Teil II: Untersuchungen an dem Werkstoff MAR-M247 LC FK HIP, Final report for the FVV-project Nr. 438, Industrieanlagen-Betriebsgesellschaft mbH (IABG), Fraunhofer-Institut für Betriebsfestigkeit (LBF), Darmstadt, 1994.Google Scholar
  42. 42.
    D. Gelmedin and K.H. Lang: Ermüdungsverhalten von Hochtemperaturwerkstoffen bei hohen Grundlasten, Final report for the FVV-project Nr. 867, Institut für Werkstoffkunde I, Universität Karlsruhe, 2010.Google Scholar
  43. 43.
    M. Prager and C. S. Shira: Welding of Precipitation Hardening Nickel-Base Alloys, Weld Research Council Bulletin, vol. 6, 1968, pp. 128-155.Google Scholar
  44. 44.
    J.M. Kalinowski: Weldability of a Nickel-Based Superalloy, NASA Contractor Report 195376, August 1994.Google Scholar
  45. 45.
    G. Cam and M. Kocak, International Materials Reviews, vol. 43, 2013, pp. 1-44.CrossRefGoogle Scholar
  46. 46.
    A. Basak and S. Das: JOM, vol. 70, 2018, pp. 53-59.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • André Seidel
    • 1
    • 2
    Email author
  • Thomas Finaske
    • 1
  • Ariane Straubel
    • 2
  • Horst Wendrock
    • 3
  • Tim Maiwald
    • 1
    • 2
  • Mirko Riede
    • 1
  • Elena Lopez
    • 1
  • Frank Brueckner
    • 1
    • 4
  • Christoph Leyens
    • 1
    • 2
  1. 1.Fraunhofer-Institute for Material and Beam TechnologyDresdenGermany
  2. 2.Technische Universität DresdenDresdenGermany
  3. 3.Leibniz-Institut für Festkörper- und Werkstoffforschung DresdenDresdenGermany
  4. 4.Luleå University of TechnologyLuleåSweden

Personalised recommendations