Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4581–4594 | Cite as

Effect of Initial Microstructure on High-Temperature Dynamic Deformation of Ti-6Al-4V Alloy

  • Sindhura Gangireddy


One of the attractive properties of Ti-6Al-4V alloy is control of microstructure through heat treatment to vary the mechanical properties. In this study, three different microstructures, Lamellar, Widmanstätten, and Martensitic morphologies, were created through heat treatment at a post-β transus temperature followed by cooling at different rates. With faster cooling rates, the microstructures evolved finer lamellae, smaller colony sizes, and thinner grain boundary layers. High-temperature dynamic compression was conducted on these specimens at a strain rate of 1000 s−1 and temperatures in the range of 23 °C to 1045 °C. Flow stresses decreased linearly with colony size and grain boundary layer thickness, but increased with inverse square root of lamellar thickness. This strong correlation of flow stress to several microstructural feature sizes indicated multiple modes of deformation. All three microstructures showed identical thermal softening. The softening rate was intensified at elevated temperatures due to hcp → bcc allotropic phase transformation. Gangireddy modification to Johnson–Cook model could account for this augmented softening and the modified J–C model predicted the three microstructures to follow a similar thermal softening coefficient m = 0.8. The kinetics of phase transformation appear to be very rapid irrespective of the microstructural differences in the Ti-6Al-4V alloy.



The author gratefully acknowledges the support of Dr. Steven Mates and NIST Mechanical Performance Group as well as James Warren, NIST Technical Program Director for Materials Genomics. I also acknowledge the valuable assistance of Mr. Eran Vax and Mr. Eli Marcus of the Nuclear Research Center, Negev, Israel, for many improvements to the electrical heating control system.


  1. 1.
    R. Reda, A.A. Nofal, A.H.A. Hussein, J. Metall. Eng. ME., 2013, vol 2, pp. 48-55.Google Scholar
  2. 2.
    T. Mohandas, D. Banerjee, V.V.K. Rao, Mater. Sci. Eng. A, 1998, vol. 254, pp. 147–154,CrossRefGoogle Scholar
  3. 3.
    R. Filip, K. Kubiak, W. Ziaja, and J. Sieniawski, J. Mater. Process. Technol., 2003, vol. 133, pp. 84–89.CrossRefGoogle Scholar
  4. 4.
    A. Attanasio, M. Gelfi, A.Pola, E. Ceretti, C. Giardini, Materials, 2013, vol. 6, pp. 4268-4283.CrossRefGoogle Scholar
  5. 5.
    S. Cedergren, G. Sjöberg, G. Petti, Procedia CIRP, 2013, vol. 12, pp. 55-60.CrossRefGoogle Scholar
  6. 6.
    S.J. Sun, M.Brandt, J.Mo, Adv. Mater. Res., 2013, vol.690-693, pp. 2437-2441.CrossRefGoogle Scholar
  7. 7.
    M. Nouari, H. Makich, Metals, 2014, vol. 4, pp. 335-358.CrossRefGoogle Scholar
  8. 8.
    K.A. Hartley, J. Duffy, R.H. Hawley, J. Mech. Phys. Solids, 1987 vol. 35, pp. 283-301CrossRefGoogle Scholar
  9. 9.
    D.K. Kim, S.Y. Kang, S. Lee, K.J. Lee, Metall. Mater. Trans A, 1999, vol. 30A, pp. 81-92.CrossRefGoogle Scholar
  10. 10.
    H.J. Ryu, S.H. Hong, D. K. Kim, S. Lee, Metals and Materials., 1998, vol. 4, pp. 367-371.Google Scholar
  11. 11.
    A. Marchand, J. Mech. Phys. Solids., 1988, vol. 35, pp. 252-261.Google Scholar
  12. 12.
    D.G. Lee, S. Lee, C.S. Lee, S. Hur, Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2541-2548.CrossRefGoogle Scholar
  13. 13.
    D.G. Lee, S. Kim. S. Lee, C.S. Lee, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 315-324.CrossRefGoogle Scholar
  14. 14.
    D.G. Lee, S. Lee, C.S. Lee, Mater. Sci. Eng. A, 2004, vol. 366, pp. 25-37CrossRefGoogle Scholar
  15. 15.
    A.W. Johnson, C.W. Bull, K.S. Kumar, C.L. Briant, Metall. Mater. Trans. A, 2003, vol. 34A, pp. 295- 306CrossRefGoogle Scholar
  16. 16.
    S.P. Mates, R. Rhorer, E. Whitenton, T. Burns, D. Basak. Exp. Mech., 2008, vol. 48, pp. 799-807.CrossRefGoogle Scholar
  17. 17.
    M. Donachie: Titanium: A Technical Guide, 2nd ed., ASM International, 2000, Chap. 3, pp. 13–25.Google Scholar
  18. 18.
    S. Gangireddy, S.P. Mates, J. Dyn. Behav. Mat., 2017, vol. 3, pp. 557-574.CrossRefGoogle Scholar
  19. 19.
    D. Basak, H. W. Yoon, R. Rhorer, T. Burns, AIP Conf. Proc. 2003, vol. 684, pp. 753-759.CrossRefGoogle Scholar
  20. 20.
    D. Basak, R.A. Overfelt, D. Wang, Int. J. Thermophys., 2004, vol. 252, pp. 561-574.CrossRefGoogle Scholar
  21. 21.
    E.S.K. Menon, H.I. Aaronson, Metall. Mater. Trans. A, 1986, vol. 17A,pp. 1703-1715CrossRefGoogle Scholar
  22. 22.
    T. Ahmed, H.J. Rack, Mater. Sci. Eng. A, 1998, vol. 243,pp. 206-211CrossRefGoogle Scholar
  23. 23.
    G. Lutjering, Mater. Sci. Eng. A, 1998, vol. 243, pp. 32-45CrossRefGoogle Scholar
  24. 24.
    F.S. Lin, E.A. Starke, S.B. Chakrabortty, A. Gylser, Metall. Mater. Trans. A, 1984, vol. 15, pp. 1229-1246CrossRefGoogle Scholar
  25. 25.
    F.J. Gil, M.P. Ginebra, J.M. Manero, J. Alloys Compd., 2001, vol. 329, pp. 142-152.CrossRefGoogle Scholar
  26. 26.
    R.S. Sandala: Ph.D. Thesis, Deformation Mechanisms of Two-Phase Titanium Alloys, University of Manchester UK (2013), pp. 95–105Google Scholar
  27. 27.
    A.A. Antonysamy: Ph.D. Thesis, Microstructure, Texture and Mechanical Property Evolution during Additive Manufacturing of Ti6Al4V Alloy for Aerospace Applications, University of Manchester UK, 2012, pp. 290–94.Google Scholar
  28. 28.
    M.A. Meyers, G. Subhash, B.K. Krad, L. Prasad, Mech. Mater., 1994, vol. 17, pp. 175-193.CrossRefGoogle Scholar
  29. 29.
    Q. Li, Y.B. Xu, M.N. Bassim, J. Mater. Process. Technol., 2004, vol. 155, pp. 1889-1892.CrossRefGoogle Scholar
  30. 30.
    K.S. Chan, C.C. Wojcik, D.A. Koss, Metall. Mater. Trans. A, 1981, vol. 12A, pp.1899-1907.CrossRefGoogle Scholar
  31. 31.
    J.M. Manero, F.J. Gil, J.A. Planell, Mater., 2000, vol. 48, pp. 3353-3359.Google Scholar
  32. 32.
    T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, and Y. V. R. K. Prasad, Mater. Sci. Eng. A, 2002, vol. 325, pp. 112–125.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.University of North TexasDentonUSA

Personalised recommendations