Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4474–4483 | Cite as

Martensite Transformation During Continuous Cooling: Analysis of Dilatation Data

  • Ravi Ranjan
  • Shiv Brat Singh


The amount of athermal martensite as a function of undercooling below the martensite start temperature was quantified by analyzing the dilatation data using a novel method, and the results are compared with existing empirical equations. The discrepancy between the two results was attributed to the difference in the concentration ranges of the alloying elements considered. The importance of including the effect of substitutional elements on the lattice parameters of martensite for accurate quantitative interpretation of dilatation data was highlighted. Equations that include the effect of substitutional alloying elements were proposed to calculate martensite lattice parameters. It is further shown that it is possible to calculate the lattice parameter coefficient of a substitutional alloying element directly from the dilatation curve. It was used to estimate, for the first time, the lattice parameter coefficient of aluminum (Al) in ferrite/martensite from the dilatation curves of the two alloy steels studied in the current work. To corroborate the value of the lattice parameter coefficient of Al estimated from the dilatation data, the Bain model was also used to calculate the lattice parameter coefficient of Al independently and a good match was obtained. The lattice parameter coefficient value of Al in ferrite/martensite calculated by both these methods follows the overall trend shown by other substitutional alloying elements. The equations proposed for the lattice parameters of martensite were validated by Rietveld analysis of the X-ray diffraction (XRD) patterns.



The authors gratefully acknowledge the head of the Department of Metallurgical and Materials Engineering, the Indian Institute of Technology Kharagpur (Kharagpur, India), for providing the laboratory facility. The authors also thank the Ministry of Steel and Department of Science and Technology, Government of India, for partial financial support. The authors thank Prof. H. K. D. H. Bhadeshia, University of Cambridge, UK, and Prof. S. Banerjee, Former Chairman, Atomic Energy Commission, India and distinguished Professor, IIT Kharagpur, for helpful discussions.

Supplementary material

11661_2018_4754_MOESM1_ESM.pdf (336 kb)
Supplementary material 1 (PDF 337 kb)
11661_2018_4754_MOESM2_ESM.pdf (263 kb)
Supplementary material 2 (PDF 264 kb)


  1. 1.
    D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.CrossRefGoogle Scholar
  2. 2.
    S.M.C. van Bohemen and J. Sietsma: Mater. Sci. Technol., 2009, vol. 25, pp. 1009–12.CrossRefGoogle Scholar
  3. 3.
    S.M.C. van Bohemen: Mater. Sci. Technol., 2012, vol. 28, pp. 487–95.CrossRefGoogle Scholar
  4. 4.
    S.-J. Lee and C.J.V. Tyne: Metall. Mater. Trans. A, 2012, vol. 43, pp. 422–27.CrossRefGoogle Scholar
  5. 5.
    V. Raghavan and A.R. Entwisle: Special Report 93, The Iron and Steel Institute, 1965, pp 30–37.Google Scholar
  6. 6.
    R. Ranjan, H. Beladi, S.B. Singh, and P.D. Hodgson: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3232–47.CrossRefGoogle Scholar
  7. 7.
    R. Ranjan, T. Bhattacharyya, and S.B. Singh: in Advanced High Strength Steel: Processing and Applications, T.K. Roy, B. Bhattacharya, C. Ghosh, and S.K. Ajmani, eds., Springer Singapore, Singapore, 2018, pp. 27–38.Google Scholar
  8. 8.
    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.CrossRefGoogle Scholar
  9. 9.
    J.G. Speer, A.M. Streicher, D.K. Matlock, F. Rizzo, and G. Krauss: in Austenite Formation and Decomposition, E.B. Damm and M. Merwin, eds., ISS/TMS, Warrendale, PA, 2003, pp. 505–22.Google Scholar
  10. 10.
    D.K. Matlock, V.E. Bräutigam, and J.G. Speer: Mater. Sci. Forum, 2003, vol. 426, pp. 1089–94.CrossRefGoogle Scholar
  11. 11.
    E.J. Seo, L. Cho, Y. Estrin, and B.C.D. Cooman: Acta Mater., 2016, vol. 113, pp. 124–39.CrossRefGoogle Scholar
  12. 12.
    J.G. Speer, E.D. Moor, and A.J. Clarke: Mater. Sci. Technol., 2015, vol. 31, pp. 3–9.CrossRefGoogle Scholar
  13. 13.
    H.K.D.H. Bhadeshia: Proc. Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, London, 2010, pp. 3–18.Google Scholar
  14. 14.
    C. Garcia-Mateo and F.G. Caballero: Int. J. Mater. Res., 2007, vol. 98, pp. 137–43.CrossRefGoogle Scholar
  15. 15.
    F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown: Mater. Sci. Technol., 2002, vol. 18, pp. 279–84.CrossRefGoogle Scholar
  16. 16.
    C. García-Mateo and F.G. Caballero: ISIJ Int., 2005, vol. 45, pp. 1736–40.CrossRefGoogle Scholar
  17. 17.
    T. Yokota, C.G. Mateo, and H.K.D.H. Bhadeshia: Scripta Mater., 2004, vol. 51, pp. 767–70.CrossRefGoogle Scholar
  18. 18.
    X.Y. Long, F.C. Zhang, J. Kang, B. Lv, and X.B. Shi: Mater. Sci. Eng., A, 2014, vol. 594, pp. 344–51.CrossRefGoogle Scholar
  19. 19.
    P. Jacques, F. Delannay, X. Cornet, P. Harlet, and J. Ladriere: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2383–93.CrossRefGoogle Scholar
  20. 20.
    T.D. Cock, J.P. Ferrer, C. Capdevila, F.G. Caballero, V. López, and C.G. de Andrés: Scripta Mater., 2006, vol. 55, pp. 441–43.CrossRefGoogle Scholar
  21. 21.
    M.D. Meyer, D. Vanderschueren, and B.C.D. Cooman: ISIJ Int., 1999, vol. 39, pp. 813–22.CrossRefGoogle Scholar
  22. 22.
    S. Hashimoto, S. Ikeda, K.-I. Sugimoto, and S. Miyake: ISIJ Int., 2004, vol. 44, pp. 1590–98.CrossRefGoogle Scholar
  23. 23.
    M. Mukherjee, S.B. Singh, and O.N. Mohanty: Mater. Sci. Eng., A, 2008, vol. 486, pp. 32–37.CrossRefGoogle Scholar
  24. 24.
    O. Matsumura, Y. Sakuma, and H. Takechi: Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 570–79.CrossRefGoogle Scholar
  25. 25.
    T. Bhattacharyya, S.B. Singh, S. Das, A. Haldar, and D. Bhattacharjee: Mater. Sci. Eng., A, 2011, vol. 528, pp. 2394–2400.CrossRefGoogle Scholar
  26. 26.
    S. Samanta, S. Das, D. Chakrabarti, I. Samajdar, S.B. Singh, and A. Haldar: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5653–64.CrossRefGoogle Scholar
  27. 27.
    R. Ranjan and S.B. Singh: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 88–93.CrossRefGoogle Scholar
  28. 28.
    K. Gunabalapandian, S. Samanta, R. Ranjan, and S.B. Singh: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 2099–2104.CrossRefGoogle Scholar
  29. 29.
    W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 5–26.CrossRefGoogle Scholar
  30. 30.
    S.-J. Lee and Y.-K. Lee: Scripta Mater., 2005, vol. 52, pp. 973–76.CrossRefGoogle Scholar
  31. 31.
    W.B. Pearson: A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, Oxford, United Kingdom, 1964.Google Scholar
  32. 32.
    F.E. Bowman, R.M. Parke, and A.J. Herzig: Trans. Am. Soc. Met., 1943, vol. 31, p. 487.Google Scholar
  33. 33.
    A.P. Guljaev and E.F. Trusova: Ž. Tekh. Fiz. SSSR, 1950, vol. 20, p. 66.Google Scholar
  34. 34.
    J.T. Norton: Trans. AIMME, 1935, vol. 116, p. 386.Google Scholar
  35. 35.
    W.C. Ellis and E.S. Greiner: Trans. Am. Soc. Met., 1941, vol. 29, p. 415.Google Scholar
  36. 36.
    H. Martens and P. Duwez: Trans. Am. Soc. Met., 1952, vol. 44, p. 484.Google Scholar
  37. 37.
    A.L. Sutton and W. Hume-Rothery: Phil. Mag., 1955, vol. 46, p. 1295.CrossRefGoogle Scholar
  38. 38.
    D.D. Van Horn: Doctorate Thesis in Physics, Case Institute of Technology, Cleveland, OH, 1949.Google Scholar
  39. 39.
    C.S. Smith: J. Appl. Phys., 1941, vol. 12, p. 817.CrossRefGoogle Scholar
  40. 40.
    D.J. Dyson and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469–74.Google Scholar
  41. 41.
    L. Cheng, A. Böttger, T.H. de Keijser, and E.J. Mittemeijer: Scripta Metall. Mater., 1990, vol. 24, pp. 509–14.CrossRefGoogle Scholar
  42. 42.
    Y. Lu, H. Yu, and R.D. Sisson: Mater. Sci. Eng., A, 2017, vol. 700, pp. 592–97.CrossRefGoogle Scholar
  43. 43.
    T.A. Kop, J. Sietsma, and S. Van Der Zwaag: J. Mater. Sci., 2001, vol. 36, pp. 519–26.CrossRefGoogle Scholar
  44. 44.
    M. Gómez, S.F. Medina, and G. Caruana: ISIJ Int., 2003, vol. 43, pp. 1228–37.CrossRefGoogle Scholar
  45. 45.
    E. Clementi, D.L. Raimondi, and W.P. Reinhardt: J. Chem. Phys., 1967, vol. 47, pp. 1300–07.CrossRefGoogle Scholar
  46. 46.
    H.K.D.H. Bhadeshia: Martensite in Steels, 2009,
  47. 47.
    H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructure and Properties, Butterworth-Heinemann, Elsevier, Oxford, United Kingdom, 2006.Google Scholar
  48. 48.
    E.C. Bain and N.Y. Dunkirk: Trans. TMS-AIME, 1924, vol. 79, p. 25.Google Scholar
  49. 49.
    A.L. Roitburd and G.V. Kurdjumov: Mater. Sci. Eng., 1979, vol. 39, pp. 141–67.CrossRefGoogle Scholar
  50. 50.
    E.V. Pereloma: Mater. Sci. Technol., 2016, vol. 32, pp. 99–103.CrossRefGoogle Scholar
  51. 51.
    C. Zener: Trans. AIME, 1946, vol. 167.Google Scholar
  52. 52.
    H.K.D.H. Bhadeshia: Philos. Mag., 2013, vol. 93, pp. 3714–25.CrossRefGoogle Scholar
  53. 53.
    R.P. Reed and R.E. Schramm: J. Appl. Phys., 1969, vol. 40, pp. 3453–58.CrossRefGoogle Scholar
  54. 54.
    L. Zwell, D.E. Carnahan, and G.R. Speich: Metall. Trans., 1970, vol. 1, pp. 1007–09.Google Scholar
  55. 55.
    J.B. McKinnon, D. Melville, and E.W. Lee: J. Phys. C: Solid State Phys., 1970, vol. 3, p. S46.CrossRefGoogle Scholar
  56. 56.
    N. Takahara, M. Takahashi, and R. Oshima: J. Jpn. Inst. Met., 1995, vol. 59, pp. 599–606.CrossRefGoogle Scholar
  57. 57.
    L.J. Swartzendruber: Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 456–62.CrossRefGoogle Scholar
  58. 58.
    L. Kaufman: Special Report No. 93, The Iron and Steel Institute, 1965, pp 48–52.Google Scholar
  59. 59.
    C.M. Wayman: Special Report No. 93, The Iron and Steel Institute, 1965, pp 153–63.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations