Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4824–4837 | Cite as

Effects of Carbon Variation on Microstructure Evolution in Weld Heat-Affected Zone of Nb-Ti Microalloyed Steels

  • Xiaoping Ma
  • Xueda Li
  • Brian Langelier
  • Baptiste Gault
  • Sundaresa Subramanian
  • Laurie Collins
Article
  • 118 Downloads

Abstract

We investigated the effects of C concentration variation from 0.028 to 0.058 wt pct on microstructure of the coarse grained heat-affected zone (CGHAZ) of low heat input girth welded Ti-Nb microalloyed steels by using electron microscope and atom probe tomography. It is found that the CGHAZ microstructure exhibits a systematic response to C variation. Increased C raises the temperature for precipitation of NbC. This leads to coarser (Ti, Nb)N-Nb(C, N) but finer delayed strain-induced NbC in the high-C steel than in the low-C steel. Fine strain-induced NbC are ineffective in preventing austenite grain coarsening in CGHAZ due to their fast dissolution upon heating. For a given inter-particle spacing originally determined by (Ti, Nb)N particles, increased epitaxial growth of Nb(C, N) on pre-existing (Ti, Nb)N in the high-C steel results in a smaller austenite grain size of 34 µm in the CGHAZ of the high-C steel than that of 52 µm in the low-C steel. Increased C promotes a microstructure consisting of bainitic lath structure with C Cottrell atmospheres at dislocation debris and martensitic layers of 30 to 100 nm in thickness at inter-lath boundaries in the CGHAZ. Increased C promotes configuration of crystallographic variants belonging to different Bain groups in the neighbors, preferentially twin-related variant pairs within a bainite packet.

Notes

Acknowledgments

The authors wish to express grateful thanks to Dr. Gianluigi Botton, Dr. Glynis de Silveira, Mr. Chris Butcher, Dr. Andreas Korinek for help with EBSD and TEM characterization of the samples, Mrs. Julia Huang and Mr. Travis Casagrande for help with FIB preparation of the atom probe samples in Canadian Center of Electron Microscope (CCEM) at McMaster University. The funding from CBMM, Brazil, and Evraz, Inc., NA, Canada is gratefully acknowledged.

Supplementary material

11661_2018_4751_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)

References

  1. 1.
    [1] S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, J. Hartmann and S.G. Jansto: Mater. Sci. Eng. A, 2008, vol. 478, pp. 26-37.CrossRefGoogle Scholar
  2. 2.
    [2] Ivani De S. Bott, Luis F.C.G. Teixeira and Paulo R. Rios: Metall. Trans. A, 2005, vol. 36A, pp. 443-54.CrossRefGoogle Scholar
  3. 3.
    [3] A. Lambert-Perlade. A.F. Gourgues, J. Besson, T. Sturel and A. Pineau: Metall. Mater. Trans. A, 2004, vol. 5A, pp. 1039-53.CrossRefGoogle Scholar
  4. 4.
    A.D. Batte, P.J. Boothby, and A.B. Rothwell: Proc. Int. Symp. Niobium 2001, Orlando, Florida, 2001, pp. 931–58.Google Scholar
  5. 5.
    [5] K. Banerjee, M. Militzer, M. Perez and X. Wang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3161-72.CrossRefGoogle Scholar
  6. 6.
    [6] M. Maalekian, R. Radis, M. Militzer, A. Moreau and W.J. Poole: Acta Mater., 2012, vol. 60, pp. 1015-26CrossRefGoogle Scholar
  7. 7.
    [7] T. Gladman and F.B. Pickering: Effect of grain size on the mechanical properties of ferrous materials, in: T.N. Baker (Ed.), Yield, Flow and fracture of polycrystals, Applied Science pub., London and New York, 1983, pp. 141-98.Google Scholar
  8. 8.
    [8] B.L. Bramfitt and J. G. Speers: Metall. Mater. Trans. A, 1988, vol. 21A, pp. 817-29.Google Scholar
  9. 9.
    [10] F. Matsuda, Y. Fukada, H. Okada, C. Shiga, K. Ikeuchi, Y. Horii, T. Shiwaku and S. Suzuki: Welding in the World/Le Soudage dans le Monde, 1996, vol. 37, pp. 134-54.Google Scholar
  10. 10.
    [11] C.L. Davis and J.E. King: Mater. Sci. Technol., 1993, vol. 9, pp. 8-15.CrossRefGoogle Scholar
  11. 11.
    [9] A. Cottrell: Brittle fracture from pile-ups in polycrystalline iron, in: T.N. Baker (Ed.), Yield, Flow and fracture of polycrystals, Applied Science pub., London and New York, 1983, pp. 123-29.Google Scholar
  12. 12.
    [12] M. Hillert and L.I. Staffansson: Acta Chem. Scand., 1970, vol. 24, pp. 3618-26.CrossRefGoogle Scholar
  13. 13.
    [13] K. Thompson, D. Lawrence, D.J. Larson, J.O. Olson, T.F. Kelly and B. Gorman: Ultramicroscopy, 2007, vol. 107, pp. 131-39.CrossRefGoogle Scholar
  14. 14.
    [14] B. Gault, M.P. Moody, J.M. Cairney and S.P. Ringer: Atom Probe Microscopy, Springer Science, New York, 2012.CrossRefGoogle Scholar
  15. 15.
    [15] H.K.D.H. Bhadeshia and J.W. Christian: Metall Trans A, 1990, vol. 21(3), pp. 767- 97.CrossRefGoogle Scholar
  16. 16.
    [16] M. Nemoto: High voltage electron microscopy, Academic Press, New York, 1974, pp. 230.Google Scholar
  17. 17.
    [17] H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Trans. A, 1979, vol. 10, pp. 895-907.CrossRefGoogle Scholar
  18. 18.
    [18] D. Kalish and M. Cohen: Mater. Sci. Eng., 1970, vol. 6, pp. 156-66.CrossRefGoogle Scholar
  19. 19.
    [19] M. Peet, S.S. Babu, M.K. Miller and H.K.D.H. Bhadeshia: Scripta Mater., 2004, vol. 50, pp. 1277-81.CrossRefGoogle Scholar
  20. 20.
    [20] F.G. Caballero, M.K. Miller, S.S. Babu and C. Garcia-Mateo: Acta Mater., 2007, vol. 55, pp. 381-90.CrossRefGoogle Scholar
  21. 21.
    [21] A. Cochardt, G. Schoeck and H. Wiedersich: Acta Metall., 1955, vol. 3(6), pp. 533-37.CrossRefGoogle Scholar
  22. 22.
    S.V. Subramanian, F. Boratto, J.J. Jonas, and C.M. Sellars: Proc. Int. Symp. Microalloyed Bar Forg. Steels, Hamilton, Canada, 1990, pp. 120–36.Google Scholar
  23. 23.
    [23] M.T. Nagata, J.G. Speer and D.K. Matlock: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3099-110.CrossRefGoogle Scholar
  24. 24.
    H. Zou: Kinetics of Carbonitride Precipitation in Microalloyed Steels. Ph.D. Thesis, McMaster University, Canada, 1991.Google Scholar
  25. 25.
    [25] S.G. Hong, K.B. Kang and C.G. Park: Scripta Mater., 2002, vol. 46, pp. 163-68.CrossRefGoogle Scholar
  26. 26.
    [26] X. Ma, C. Miao, B. Langelier and S. Subramanian: Mater. Des., 2017, vol. 132, pp. 244-49.CrossRefGoogle Scholar
  27. 27.
    [27] P. Gong, E.J. Palmiere and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp. 392-403.CrossRefGoogle Scholar
  28. 28.
    [28] J.W. Cahn: Acta Matell., 1962, vol. 10, pp. 789-98.CrossRefGoogle Scholar
  29. 29.
    [29] T. Nishizawa: The 131 st and 132 nd Nishiyama Memorial Seminar, ISIJ, Tokyo, 1990, pp. 17.Google Scholar
  30. 30.
    [30] C. Fossaert, G. Rees, T. Maurickx and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 21-30.CrossRefGoogle Scholar
  31. 31.
    [31] G.I. Rees, J. Perdrix, T. Maurickx and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1995, vol. 194, pp. 179-86.CrossRefGoogle Scholar
  32. 32.
    [32] C.S. Smith: Trans. Am. Soc. Metals, 1953, vol.45, pp. 533-75.Google Scholar
  33. 33.
    H. Réglé, N. Maruyama, and N. Yoshinaga: Proc. Int. Conf. Adv. High Strength Sheet Steels Automot. Appl., Winter Park, Colorado, 2004, pp. 239–46.Google Scholar
  34. 34.
    [34] M. Hillert: Decomposition of Austenite by Diffusional Processes, Interscience, New York, 1972.Google Scholar
  35. 35.
    [35] Z. Guo, C.S. Lee and J.W. Morris Jr: Acta Mater., 2004, vol. 52, pp. 5511 -18.CrossRefGoogle Scholar
  36. 36.
    [36] H. Kitahara, R. Ueji, N. Tsuji and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279-88.CrossRefGoogle Scholar
  37. 37.
    [37] Y. You, C. Shang, W. Nie and S. Subramanian: Mater. Sci. Eng. A, 2012, vol. 558, pp. 692-701.CrossRefGoogle Scholar
  38. 38.
    [38] Y. You, C. Shang, L. Chena and S. Subramanian: Mater. Sci. Eng. A, 2012, vol. 546, pp. 111-18.CrossRefGoogle Scholar
  39. 39.
    [39] T. Furuhara, H. Kawata, S. Morito and T. Maki: Mater. Sci. Eng. A, 2006, vol. 431, pp. 228-36.CrossRefGoogle Scholar
  40. 40.
    [40] N. Takayama, G. Miyamoto and T. Furuhara: Acta Mater., 2012, vol. 60, pp. 2387-96.CrossRefGoogle Scholar
  41. 41.
    [41] T. Furuhara, H. Kawata, S. Morito, G. Miyamoto and T. Maki: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1003-13.CrossRefGoogle Scholar
  42. 42.
    [42] V. Pancholi, Madangopal Krishnan, I.S. Samajdar, V. Yadav and N.B. Ballal: Acta Mater., 2008, vol. 56, pp. 2037-50.CrossRefGoogle Scholar
  43. 43.
    [43] S. Morito, H. Tanaka, R. Konishi, T. Furuhara and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789-99.CrossRefGoogle Scholar
  44. 44.
    [44] S. Morito, X. Huang, T. Furuhara, T. Maki and H. Hansen: Acta Mater., 2006, vol. 54, pp. 5323-31.CrossRefGoogle Scholar
  45. 45.
    [45] A. Lambert-Perlade, A.F. Gourgues and A. Pineau: Acta Mater., 2004, vol. 52, pp. 2337-48.CrossRefGoogle Scholar
  46. 46.
    [46] H.K.D.H. Bhadeshia and D.V. Edmonds: Acta Metall., 1980, vol. 28, pp. 1265-73.CrossRefGoogle Scholar
  47. 47.
    [47] M. Hillert, L. Höglund and J. Ågren: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3693-700.CrossRefGoogle Scholar
  48. 48.
    [48] Y. Zhong, F. Xiao, J. Zhang, Y. Shan, W. Wang and K. Yang: Acta Mater., 2006, vol. 54, pp. 435-43.CrossRefGoogle Scholar
  49. 49.
    [49] Seok-Jae Lee, June-Soo Park and Young-Kook Lee: Scripta Mater., 2008, vol. 59, pp. 87-90.CrossRefGoogle Scholar
  50. 50.
    [50] X. Li, X. Ma, S.V. Subramanian, C. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 616, pp. 141-47.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Xiaoping Ma
    • 1
    • 2
  • Xueda Li
    • 3
  • Brian Langelier
    • 1
  • Baptiste Gault
    • 4
  • Sundaresa Subramanian
    • 1
  • Laurie Collins
    • 5
  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada
  2. 2.Algoma Steel Inc.Sault Ste. MarieCanada
  3. 3.College of Mechanical and Electronic EngineeringChina University of Petroleum (East China)QingdaoChina
  4. 4.Department of Microstructure Physics and Alloy DesignMax-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  5. 5.EVRAZ North AmericaReginaCanada

Personalised recommendations